Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов имени И.В. Гребенщикова Российской академии наук (ИХС РАН)

На правах рукописи

Самохин Георгий Сергеевич

Новый путь к Ge-замещенным герматранам, квазигерматранам и гипогерматранам.

Специальность 02.00.04 – физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

Диссертации на соискание ученой степени кандидата химических наук

> Санкт-Петербург 2011

Работа выполнена в Федеральном государственном бюджетном учреждении науки Ордена Трудового Красного Знамени Институте химии силикатов имени И.В. Гребенщикова Российской академии наук (ИХС РАН)

Научный руководитель доктор химических наук Кочина Т.А.

Официальные оппоненты:

доктор химических наук Химич Н.Н. кандидат химических наук де Векки Д.А.

Ведущая организация:

Институт органической химии им. Н.Д. Зелинского РАН (ИОХ РАН, Москва)

Защита диссертации состоится « 15 » февраля 2012 года в 11:00 часов на заседании диссертационного совета Д 002.107.01 в Институте химии силикатов им. И.В. Гребенщикова РАН по адресу 199034, Санкт-Петербург, наб. Макарова, д.2.

С диссертацией можно ознакомиться в библиотеке Института химии силикатов РАН

Автореферат разослан «15» января 2012 года

Ученый секретарь Диссертационного совета Кандидат химических наук

Сычева Г.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность темы</u> Изучение природы химической связи является одной из важнейших проблем химической науки. Особый интерес представляют соединения, в которых реализуются неклассические междуатомные взаимодействия. К ним, в частности, относятся органические производные гипервалентных кремния, германия, олова. Важнейшими представителями соединений этого типа являются силатраны и герматраны – внутрикомплексные трициклические кремниевые и германиевые эфиры триэтаноламина с общей формулой XM(OCH₂CH₂)₃N, где M= Si, Ge.

Школа академика М.Г.Воронкова заложила основы химии силатранов, герматранов и других соединений гипервалентных кремния и германия. В Институте химии силикатов им. И.В.Гребенщикова РАН (ИХС РАН) фундаментальные исследования в этой области проводятся в течение многих лет.

В отличие от всесторонне изученных в этом отношении силатранов, нашедших широкое применение в медицине и сельском хозяйстве, герматранам, впервые синтезированным в 1965 году, уделено значительно меньше внимания. Тем не менее эти соединения вызывают большой интерес у химиков-исследователей, поскольку, как и силатраны они обладают уникальными свойствами и структурой, а также специфической биологической активностью.

Не меньший интерес вызывают малоизученные бициклические германиевые производные диэтаноламина, названные нами квазигерматранами $XYGe(OCH_2CH_2)_2NR$ (R= Me, H), а также их моноциклические аналоги $XYZGeOCH_2CH_2NH_2$ – гипогерматраны.

Все эти соединения примечательны тем, что содержат внутримолекулярную трансанулярную координационную связь N→Ge, длина и прочность которой определяются числом и природой электроотрицательных заместителей окружающих центральный атом германия (суммарной электроотрицательностью).

Все это указывает, что дальнейшее развитие методологии синтеза и изучения молекулярной, стереоэлектронной структуры, рекционной способности и биологической активности внутрикомплексных соединений гипервалентного германия (Ge-замещенные герматраны, квази- и гипогерматраны) актуально и перспективно для создания ранее неизвестных лекарственных средств, стимуляторов и ингибиторов жизнедеятельности микро- и макроорганизмов.

Работа выполнялась в соответствии с утвержденным планом ИХС РАН по темам «Химия 1галогенметаллатранов ХМ(ОСН₂СН₂)₃N (M= Si, Ge; X= F, Cl, Br, I, ClO₄)» (№Гос.Рег,01200712515 2007-2009); и «Соединения элементов 14 группы в гипо- и гипервалентном состоянии» (№ Гос. Рег. .01201052581, 2010-2012), а также при финансовой поддержке в рамках программы Отделения химии и наук о материалах РАН «Новые типы

химических связей. Природа химической связи в молекулах, содержащих атомы элементов в нетипичном координационном состоянии» 2009-2011, и программы Президиума РАН «Разработка методов получения химических веществ и создание новых материалов» 2008-2011, государственного контракта № 2009-1.1-000-080-147 «Проведение научных исследований коллективом НОЦ «Химия и химические технологии наноматериалов» по разработке физикохимических основ создания новых композиционных и гибридных наноматериалов для энергетики, оптики, экологии, медицины».

<u>Цель работы</u> Разработка новых методов синтеза Ge-замещенных герматранов, квази- и гипогерматранов с высокоэлектроотрицательными заместителями у атома германия и изыскания среди них лекарственных препаратов, стимуляторов и ингибиторов жизнедеятельности микроорганизмов. Изучение их кристаллической, молекулярной, стереоэлектронной структуры, реакционной способности и биологической активности.

Практическая ценность работы Предложен новый простой путь синтеза замещенных герматранов, квазигерматранов и гипогерматранов, основанный на взаимодействии Ge-гидроксипроизводных герматрана и его квази- и гипоаналогов с солями аммония. Этим методом синтезировано 37 новых, ранее неизвестных соединений, имеющих специфическую биологическую активность – потенциальных медицинских препаратов и фунгицидов. Бромпроизводные герматрана и гипогерматрана рекомендованы в качестве биоцидов силикатных бактерий *Bacillus mucilaginosus*, а изоструктурные фторпроизводные в качестве биоцидов грибов поверхностной плесени *Alternaria alternata* и *Aspergillus Niger*.

<u>Научная новизна</u> На защиту представлены следующие оригинальные результаты и основные положения:

- впервые синтезированы индивидуальные 1,1-бисгидроксиквазигерматран (1,1-квазигерматрандиол) (HO)₂Ge(OCH₂CH₂)₂NR (R= H, Me) и ранее неизвестный 1,1,1тригидроксигипогерматран (1,1,1-гипогерматрантриол) (HO)₃Ge(OCH₂CH₂)NH₂. Установлена кристаллическая, молекулярная и стереоэлектронная структура 1,1-квазигерматранадиола;

- реакция Ge-гидроксипроизводных герматрана, квазигерматрана и гипогерматрана с солями аммония предложена как простой и удобный метод синтеза Ge-замещенных герматранов, квази- и гипогерматранов. Этим путем получено 37 ранее неизвестных соединений этого ряда;

- увеличение числа электроотрицательных заместителей у центрального атома Ge приводит к сокращению длинны и возрастанию прочности координационной связи N→Ge;

- герматраны, квази- и гипогерматраны с высокоэлектроотрицательными заместителями у атома Ge проявляют фунгицидное и бактерицидное действие на грибы Alternaria alternata и Aspergillus Niger и бактерии Bacillus mucilaginosus.

<u>Апробация</u> Основные результаты работы доложены на следующих совещаниях и конференциях:

XVIII Менделеевский съезд по общей и прикладной химии. 2007.

International Conference on Organometallic and Coordination Chemistry. Nizhniy Novgorod.2008.

IX Молодежная конференция ИХС РАН 2008г.;

Х Молодежная конференция ИХС РАН 2009г.;

XI Молодежная конференция ИХС РАН 2010г.;

Международная конференция «Основные тенденции развития химии в начале XXI века» Санкт-Петербург. 2009 г;

XXIV Международная Чугаевская конференция по координационной химии. Санкт-Петербург. 2009 г;

XIX Менделеевский съезд по общей и прикладной химии. Волгоград. 2011.

Симпозиум «Синтетическая, теоретическая, биологическая и прикладная химия элементоорганических соединений», посвященный 90-летию академика М.Г. Воронкова, Санкт-Петербург, 2011.

Публикации и личный вклад автора Автором по материалам диссертации опубликовано 4 статьи в рецензируемых журналах, рекомендованных ВАК и 8 тезисов докладов. Автор принимал непосредственное участие в планировании и проведении экспериментов, связанных с синтезом Ge-замещенных герматранов, квазигерматранов и гипогерматранов, в проведении экспериментальных физико-химических исследований и теоретических расчетов.

<u>Структура и объем работы</u> Диссертация изложена на 137 страницах. Состоит из введения, 7 глав, выводов и списка цитируемой литературы из 178 наименований. Диссертация содержит 16 таблиц и 18 рисунков.

Автор сердечно благодарит В.В.Беляеву, Т.Н.Аксаментову, А.И.Албанова, Л.В.Клыбу, А.А.Корлюкова, Н.Н.Чипанину за помощь в исследовании синтезированных нами герматранов методами ЯМР, ИК, масс-спектрометрии и рентгеновской дифракции.

Особую благодарность он приносит академику М.Г.Воронкову за постоянное внимание к его исследованиям и консультативную помощь.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулирована цель, дана общая характеристика работы, показана научная новизна полученных результатов и их практическая значимость.

<u>В первой главе (литературный обзор)</u> Рассмотрены особенности элементов подгруппы кремния и их соединений. Особое внимание уделено органическим соединениям германия. Проведен анализ современного состояния в области получения замещенных герматранов, квазигерматранов и поставлены задачи настоящего исследования.

<u>Глава вторая</u> посвящена получению 1-замещенных герматранов с высокоэлектроотрицательными заместителями.

Ранее кратко сообщалось, что взаимодействие 1-герматранола с галогенидами аммония NH₄X (X=F, Cl) в водной среде соответственно приводит к 1-фтор- или 1-хлоргерматрану (реакция Воронкова). Эта реакция резко отличает 1-герматранол от его кремниевого аналога 1силатранола, который в этих и измененных условиях с солями аммония не реагирует. Это указывает, что герматранол является основанием, а силатранол, напротив, слабой НО-кислотой, что подтверждается данными ЯМР ¹Н. Осно́вные свойства герматранола указывали, что он будет реагировать с солями аммония с выделением аммиака и образованием соответствующих герматранилиевых солей по схеме:

 $NH_4X + HOGe(OCH_2CH_2)_3N \rightarrow XGe(OCH_2CH_2)_3N + H_2O + NH_3$ $(NH_4)_2Y + 2HOGe(OCH_2CH_2)_3N \rightarrow Y[Ge(OCH_2CH_2)_3N]_2 + 2H_2O + 2NH_3$ (1)

Этим путем нами получены 1-замещенные герматраны $XGe(OCH_2CH_2)_3N$ с X= F(I), Cl(II), Br(III), I(IV), ClO₄(V), SCN (VI), NO₃(VII) и Y[Ge(OCH_2CH_2)_3N]_2 с Y= CO₃(VIII), SO₄(IX). При этом герматраны с X= Br, I, получены этим способом впервые, а их аналоги с X=ClO₄,SCN, NO₃ и Y= CO₃, SO₄ ранее не были известны. Выходы синтезированных герматранов по уравнению (1) составили 70-95%. Примечательно, что как в водной среде, так и в ацетонитриле их выходы оказались практически одинаковы, что указывает на их гидролитическую устойчивость. Данные элементного анализа, температуры плавления и выходы синтезированных нами герматранов (I-IX) приведены в таблице 1.

N⁰	X	Данные элементного анализа	Т. пл., ℃	Выход, %
I	F	С 30.65, Н 5.15, F 8.06, Ge 29.89, N 6.48 (найдено)	250	79-85
		С 30.31, Н 5.09, F 7.99, Ge 30.54, N 5.89 (вычислено)	(возг.)	.,
п	Cl	С 25.44, Н 5.66, Cl 12.53, Ge 25.07, N 8.17 (найдено)	250	70.70
11	CI	С 28.35, H 4.76, Cl 13.95, Ge 28.56, N 5.51 (вычислено)	(разл.)	10-19
ш	D.,	С 23.34, Н 5.14, Br 26.09, Ge 23.04, N 5.29 (найдено)	210	00.05
111	DI	С 24.13, Н 4.05, Br 26.75, Ge 24.31, N 4.69 (вычислено)	(плавл.)	90-95
IV/	т	С 19.69, Н 4.09, I 35.82, Ge 19.47, N 5.19 (найдено)	180	<u> 00 07</u>
1 V	1	С 20.85, Н 3.50, I 36.71, Ge 21.01, N 4.05 (вычислено)	(разл.)	00-07
V	CIO	С 21.35, Н 4.32, СІ 9.75, Ge 23.37, N 5.14 (найдено)	220	75
v		С 22.65, Н 3.80, Сl 11.14, Ge 22.83, N 4.04 (вычислено)	(разл.)	75
VI	SCN	С 30.55, H 4.84, Ge 25.99, N 11.8, S 9.93 (найдено)	210	87
V I	SCI	С 30.37, Н 4.37, Ge 26.23, N 10.12, S 11.58 (вычислено)	210	07
VII	NO	С 26.13, Н 5.03, Ge 23.97, N 10.81 (найдено)	200	72
VII	NO ₃	С 25.67, H 4.31, Ge 25.86, N 9.98 (вычислено)	(разл.)	12
VIII	CO.	С 30.98, Н 5.47, Ge 27.76, N 6,78 (найдено)	300	72
v 111	003	С 31.38, Н 4.86, Ge 29.19, N 5.63 (вычислено)	(разл.)	12
IV	50	С 27.87, Н 5.22, Ge 28.09, N 6.48, S 7.63 (найдено)	220	05
іл	30_4	С 27.01, Н 4.53, Ge 27.21, N 5.25, S 6,01 (вычислено)	(разл.)	75

Таблица 1. Герматраны XGe(OCH₂CH₂)₃N и Y[Ge(OCH₂CH₂)₃N]₂

В таблице 2 приведены спектры ЯМР ¹H, ¹³C, ¹⁵N, ¹⁹F растворов герматранов (I-V). Для сравнения в табл.3 приводятся параметры спектров ЯМР изоструктурных силатранов.

Таблица 2. Параметры спектров	Coorrespondence	δ _H , м.д. NCH ₂ OCH ₂		δ _C , м.д.		-δ _N ,	S N F	
ЯМР ¹ H, ¹³ C, ¹⁵ N, ¹⁹ F растворов	Соединение			NCH ₂	OCH ₂	М.Д.	-о _F , м.д.	
герматранов 25°С, 5-7% в	FGe(OCH ₂ CH ₂) ₃ N	2.97	3.80	52.22	57.99	360.9	-151.58	
CD ₃ CN и (CD ₃) ₂ SO	ClGe(OCH ₂ CH ₂) ₃ N	2.99	3.84	52.12	58.80	360.3	-	
	BrGe(OCH ₂ CH ₂) ₃ N	2.88	3.73	52.07	57.50	363.5	-	
	IGe(OCH ₂ CH ₂) ₃ N	2.84	3.62	50.77	56.10	363.3	-	
	ClO ₄ Ge(OCH ₂ CH ₂) ₃ N	2.84	3.62	50.76	56.14	362.8	-	

Таблица	3. Параметры о	спектров ЯМР ¹ Н, ¹³ С,				
15 N ^a	растворов	1-галогенсилатранов				
XSi(OCH	$_{2}CH_{2})_{3}N$					
(X= F,	Cl, Br) b CDC	Cl ₃ (примечание. а)				
Химические сдвиги ¹⁵ N измерены в CH ₂ Cl ₂)						

Соелинение	$\delta_{\rm H}$, м.д		δ _C , м.д.		-δ _N ,
Соединение	NCH ₂	OCH ₂	NCH ₂	OCH ₂	м.д. ^а
FSi(OCH ₂ CH ₂) ₃ N	2.95	3.91	50.5	56.8	349.3
ClSi(OCH ₂ CH ₂) ₃ N	3.01	3.97	51.4	58.1	348.8
BrSi(OCH ₂ CH ₂) ₃ N	3.04	4.01	-	-	348.0

Как видно из таблицы 2, при повышении атомного номера галогена, в спектрах ПМР 1-галогенгерматранов (I-V) химические сдвиги протонов атранового остова смещаются в сильное поле на 0,13 м.д. Напротив, в той же последовательности изменения заместителя X, что и в спектрах герматранов, в спектрах 1-галосилатранов (табл. 3) резонанс протонов атранового остова монотонно смещается на 0,1 м.д. в слабое поле. Также и в спектрах ¹³С изоструктурных галогенсилатранов химические сдвиги атомов углерода атранового остова при переходе от 1-фторсилатрана к 1-хлорсилатрану смещаются в слабое поле, в то время как в случае галогенгерматранов (I-V) при переходе от F к Cl и ClO₄ они смещаются на 2 м.д. в сильное поле. Это обусловлено большей жесткостью координационного узла N \rightarrow MO₃-X при M=Ge, чем при M=Si, и как следствие, большей зависимостью химических сдвигов от электроотрицательности, а не от нуклеофугности заместителя X у атома германия.

Химический сдвиг ¹⁵N в спектрах ЯМР герматранов в среднем смещен на 14 м.д. в сильное поле по сравнению с изоструктурными силатранами. Это может свидетельствовать о меньшем переносе электронной плотности между атомами N и Ge, чем между атомами N и Si. Спектры ЯМР 1-перхлоратгерматрана (V) имеют практически одинаковые параметры со спектрами 1-иодгерматрана (IV), что указывает на одинаково высокую полярность связи этих заместителей с атомом германия.

Масс-спектры синтезированных галогенгерматранов соответствовали масс-спектрам ранее изученного 1-хлоргерматрана, полученного другим способом. Примечательно, что в масс-спектре 1-фторгерматрана (I), в отличие от его аналога (II), пик молекулярного иона не регистрируется. в

то же время, основное направление фрагментации, характерное для хлоргерматрана, сохраняется и связано с последовательным элиминированием нейтральных фрагментов CH₂O и образованием ионов (для ⁷⁴Ge) [M-CH₂O]⁺ с m/z 209 (36%) и [M-2CH₂O]⁺ с m/z 179 (22%). Деградация последнего приводит к ионам [FGe]⁺ с m/z 93 (37%) и C₄H₈N (100%).

В ИК и КР спектрах герматранов (I-V) нами рассмотрены валентные колебания связей Ge-O, Ge-X и N \rightarrow Ge (табл.4). Экспериментальные значения частот этих колебаний в КР и ИК спектрах герматранов с X= F (I) и Cl(II) полностью совпадают с литературными данными. В спектрах герматранов (I-V) полосы валентных колебаний Ge-O в фрагменте GeO₃ расположены при 610-660 [γ_{as} (Ge-O)] и 530-560 [γ_{s} (Ge-O)] см⁻¹ и наиболее соответствуют вычисленным частотам. Симбатное уменьшение вычисленных и экспериментальных значений γ (Ge-X) происходит в последовательности ClO₄ > F > Cl > Br > I. Этот ряд соответствует увеличению длины связи Ge-X с увеличением атомного номера галогена. Частоты валентных колебаний координационной связи N \rightarrow Ge изученных герматранов не строго характеристичны и смешиваются с деформационными колебаниями атрановых циклов, что затрудняет их отнесение. Тем не менее, в спектрах КР герматранов (I-V) присутствуют полосы поглощения, которые на основании данных расчета преимущественно отвечают колебаниям γ (N-Ge) (табл.4).

	B3LYP/6-311+G*					КР/ИК		
	$\gamma_{as}(GeO_3)$	$\gamma_{s}(\text{GeO}_{3})$	γ(GeX)	γ(N → Ge)	$\gamma_{as}(GeO_3)$	$\gamma_{s}(\text{GeO}_{3})$	γ(GeX)	γ(N→G)
ClO ₄	641	546	702	208	597 сл/610 с	552 c/530 cp	325 cp	820 c
F^{a}	625	583	664	209	658 сл/655 с	562 o. c/557 cp	273 ср	621, 228
Cl	610 612	541 580	391	200	658 сл/652 о. с	554 o. c/530 cp	259 ср	342 ср
Br	610 612	540 579	281 300	178	679 сл/676 ср	527 c/530 cp	171 cp	261 cp
Ι					637 сл/630 с	547 c/530 cp	152 cp	174 cp

Таблица 4. Частоты валентных колебаний (см⁻¹) связей Ge-O, Ge-X и N→Ge герматранов XGe(OCH₂CH₂)₃N

Последовательность уменьшения частоты координационной связи N \rightarrow Ge (ClO₄>F>Cl>Br>I) с уменьшением электроотрицательности практически остается такой же, что и для γ (Ge-X).

Таким образом, осно́вная природа герматранола позволила использовать его реакцию с солями аммония как простой и удобный способ получения 1-замещенных герматранов. Полученные нами спектроскопические данные вносят вклад в решение проблемы сходства и различия стереоэлектронного строения и реакционной способности изоструктурных соединений кремния и германия.

<u>В третьей главе</u> рассматривается способ получения 1,1-замещенных квазигерматранов и 1,1,1-замещенных гипогерматранов.

Реакция Воронкова, являющаяся наиболее удобным способом получения 1-замещенных герматранов, содержащих высокоэлектроотрицательный заместитель у атома Ge была

распространена нами на получение соответствующих Ge-замещенных квази- и гипогерматранов. Так, взаимодействием 1,1-дигидроксиквазигерматрана с солями аммония нами были впервые получены квазигерматраны, содержащие два электроотрицательных заместителя X или один Y у атома германия, а у атома азота атом водорода или группу CH₃.

$$2NH_4X + (HO)_2Ge(OCH_2CH_2)_2NR \longrightarrow X_2Ge(OCH_2CH_2)_2NR + 2H_2O + 2NH_3$$
(2)
X= F, Cl, Br, I, NO₃, ClO₄, SCN; R=H, Me.

 $(NH_4)_2Y + (HO)_2Ge(OCH_2CH_2)_2NR \longrightarrow YGe(OCH_2CH_2)_2NR + 2H_2O + 2NH_3$ (3) Y= CO₃, SO₄; R=H, Me.

Для этого исходный 1,1-дигидроксиквазигерматран был синтезирован взаимодействием диоксида германия с диэтаноламином в водной среде в отсутствии катализатора при 90°С согласно уравнению (4). Ранее неизвестный 1,1-дигидрокси-5-метилквазигерматран был получен аналогичным образом.

$$GeO_2 + (HOCH_2CH_2)_2NR + H_2O \longrightarrow (HO)_2Ge(OCH_2CH_2)_2NR$$
(4)
R= H, Me.

Структура 1,1-квазигерматрандиола, установлена методом рентгеновской дифракции (см. главу 4).

Данные элементного анализа и температуры плавления синтезированных исходных квазигерматрандиолов и синтезированных из них 1,1-дизамещенных квазигерматранов представлены в таблице 5.

Развивая исследования в этом направлении, мы впервые синтезировали ранее неизвестные гипогерматраны Х₃GeOCH₂CH₂NH₂, содержащие также как и герматраны внутримолекулярную координационную связь N→Ge. Их можно отнести к классу драконоидов. Первый представитель этих соединений ранее неизвестный 1,1,1-гипогерматрантриол

(тригидроксигипогерматран) (HO)₃GeOCH₂CH₂NH₂ получен взаимодействием диоксида германия с 2-гидроксиэтиламином в водно-спиртовой среде при 80°С в отсутствии катализатора:

$$GeO_2 + HOCH_2CH_2NH_2 + H_2O \longrightarrow (HO)_3GeOCH_2CH_2NH_2$$
(5)

Выход гипогерматрантриола (бесцветный порошок с t_{разл.}=300°С) составил 93%.

Таблица 5. 1,1-Дизамещенные квазигерматраны	X ₂ Ge(OCH ₂ CH ₂) ₂ NR и	YGe(OCH ₂ CH ₂) ₂ NR (R=H, Me)
---	--	--

			С	I	H	0	3e	1	N	X	,Y
	T _{III.} , C°	найдено	вычислено								
HN(CH ₂ CH ₂ O) ₂ Ge(OH) ₂	170	23.42	22.91	5.34	5.29	34.42	34.62	6.41	6.68	-	-
CH ₃ N(CH ₂ CH ₂ O) ₂ Ge(OH) ₂	270(разл.)	26.37	26.84	5.59	5.86	33.11	32.45	5.85	6.26	-	-
HN(CH ₂ CH ₂ O) ₂ GeF ₂	310(разл.)	22.67	22.48	4.41	4.24	34.12	33.97	6.42	6.55	18.23	17.78
HN(CH ₂ CH ₂ O) ₂ GeCl ₂	265(разл.)	26.53	27.01	5.04	3.68	27.40	29.44	5.89	5.68	28.11	28.75
HN(CH ₂ CH ₂ O) ₂ GeBr ₂	240	14.67	14.32	2.43	2.70	22.01	21.64	4.46	4.17	47.26	47.63
HN(CH ₂ CH ₂ O) ₂ GeI ₂	200	12.02	11.18	2.63	2.11	15.39	16.90	3.68	3.26	58.70	59.09
HN(CH ₂ CH ₂ O) ₂ Ge(NO ₃) ₂	205(разл.)	14.90	16.03	6.42	3.03	23.45	24.22	11.97	14.02	-	-
HN(CH ₂ CH ₂ O) ₂ Ge(ClO ₄) ₂	260(разл.)	13.78	12.82	5.38	2.42	19.39	19.38	4.22	3.74	42.36	42.71
HN(CH ₂ CH ₂ O) ₂ Ge(SCN) ₂	145	20.73	24.69	5.41	3.11	20.41	24.88	14.67	14.04	22.34	21.97
HN(CH ₂ CH ₂ O) ₂ GeCO ₃	250(разл.)	23.52	25.47	5.58	3.85	33.88	30.80	6.17	5.94	-	-
HN(CH ₂ CH ₂ O) ₂ GeSO ₄	260(разл.)	18.21	17.68	3.89	3.34	26.14	26.72	5.53	5.15	12.96	11.80
CH ₃ N(CH ₂ CH ₂ O) ₂ GeF ₂	320(разл.)	23.31	26.37	4.47	4.87	32.12	31.88	5.81	6.15	18.57	16.68
CH ₃ N(CH ₂ CH ₂ O) ₂ GeCl ₂	285(разл.)	23.32	23.04	4.57	4.25	28.34	27.86	5.05	5.37	27.45	27.20
CH ₃ N(CH ₂ CH ₂ O) ₂ GeBr ₂	310(разл.)	16.87	17.18	3.06	3.17	21.32	20.77	4.57	4.01	45.23	45.72
CH ₃ N(CH ₂ CH ₂ O) ₂ GeI ₂	320(разл.)	13.95	13.54	2.78	2.50	15.49	16.37	3.34	3.16	58.02	57.22
CH ₃ N(CH ₂ CH ₂ O) ₂ Ge(NO ₃) ₂	330(разл.)	19.53	19.14	3.95	3.53	22.57	23.14	12.96	13.39	-	-
CH ₃ N(CH ₂ CH ₂ O) ₂ Ge(ClO ₄) ₂	280(разл.)	14.86	15.45	2.69	2.85	18.38	18.68	3.21	3.60	17.55	18.24
CH ₃ N(CH ₂ CH ₂ O) ₂ Ge(SCN) ₂	350(разл.)	26.89	27.48	3.07	3.62	24.45	23.73	13.32	13.74	20.53	20.96
CH ₃ N(CH ₂ CH ₂ O) ₂ GeCO ₃	300(разл.)	26.99	28.85	5.42	4.44	33.55	29.07	4.87	5.61	-	-
CH ₃ N(CH ₂ CH ₂ O) ₂ GeSO ₄	280(разл.)	20.58	21.01	3.32	3.88	26.20	25.40	5.36	4.90	10.86	11.22

По аналогии с реакциями (2, 3) исходный гипогерматрантриол был переведен в ранее неизвестные 1,1,1-замещенные гипогерматраны:

 $3NH_4X + (HO)_3GeOCH_2CH_2NH_2 \longrightarrow X_3GeOCH_2CH_2NH_2 + 3H_2O + 3NH_3$ (6) X= F, Cl, Br, I, NO₃, ClO₄, SCN;

Гипогерматраны содержащие двухвалентный анион Y (CO_3^{2-} , SO_4^{2-}), получены в аналогичных условиях согласно уравнению:

 $3(NH_4)_2Y + 2(HO)_3GeOCH_2CH_2NH_2 \longrightarrow Y_3(GeOCH_2CH_2NH_2)_2 + 6H_2O + 6NH_3$ (7) Y=CO₃, SO₄;

Данные элементного анализа гипогерматранов и их температура плавления приведены в табл. 6.

Таблица 6. Гипогерматраны X_3 GeOCH $_2$ CH $_2$ NH $_2$ и Y_3 (GeOCH $_2$ CH $_2$ NH $_2)_2$

			C	ł	H	C	Be]	N	Х	
Соединение	Т _{пл.} , С°	найдено	вычислено	найдено	вычислено	найдено	вычислено	найдено	вычислено	найдено	вычислено
H ₂ NCH ₂ CH ₂ OGe(OH) ₃	300(разл.)	13.57	13.08	5.02	4.94	40.51	39.52	7.43	7.62	-	-
H ₂ NCH ₂ CH ₂ OGeF ₃	300(разл.)	12.68	12.66	4.22	3.19	39.78	38.28		7.38	27.09(F)	30.05
H ₂ NCH ₂ CH ₂ OGeCl ₃	255(разл.)	10.67	10.05	2.98	2.53	30.67	30.38		5.86	43.09(Cl)	44.49
H ₂ NCH ₂ CH ₂ OGeBr ₃	285(разл.)	6.51	6.45	2.11	1.62	19.95	19.50		3.76	64.23(Br)	64.37
H ₂ NCH ₂ CH ₂ OGeI ₃	235(разл.)	4.84	4.68	1.57	1.18	15.18	14.14		2.73	74.73(I)	74.16
H ₂ NCH ₂ CH ₂ OGe(NO ₃) ₃	240	7.36	7.54	1.82	1.90	23.13	22.78		17.58	-	-
H ₂ NCH ₂ CH ₂ OGe(ClO ₄) ₃	280(разл.)	5.64	5.57	1.21	1.40	17.03	16.85		3.35	25.13(Cl)	24.67
H ₂ NCH ₂ CH ₂ OGe(SCN) ₃	300(разл.)	19.32	19.57	1.63	1.97	24.02	23.66		18.25	31.87(S)	31.34
$[H_2NCH_2CH_2OGe]_2(CO_3)_3$	340(разл.)	18.73	18.88	3.13	2.72	32.42	32.60		6.29	-	-
$[H_2NCH_2CH_2OGe]_2(SO_4)_3$	270	8.42	8.68	2.37	2.18	27.32	26.23		5.06	17.63(S)	17.38

Изучены ИК спектры поглощения синтезированных герматранов(I), квазигерматранов(II) и гипогерматранов(III) (X= F, Cl, Br, I, ClO₄, NO₃, SCN; Y= CO₃, SO₄). Частоты валентных колебаний связей Ge-O, O-C и Ge-X для соединений I, II, III приведены в таблице 7.

Таблица 7. Частоты валентных колебаний (см⁻¹) связей Ge-O, C-O и Ge-X герматранов (I), квазигерматранов (II) и гипогерматранов (III)

V V		γ(Ge-O)			γ(O-C)			γ(Ge-X)	
л, 1	Ι	II	III	Ι	Π	III	Ι	Π	III
F	658	660	643	1067-1093	1063-1097	1067-1116	273	-	-
Cl	658	651	647	1066-1097	1062-1099	1065-1107	259	-	-
Br	679	671	673	1061-1087	1060-1090	1065-1115	171	-	-
Ι	637	639	645	1059-1093	1057-1088	1063-1109	152	-	-
NO ₃	638	695	670	1062-1086	1051	1062	618, 929	620, 932	618, 930
ClO ₄	632	635	635	1062-1100	1030-1060	1064-1113	826, 1315	825, 1303	824, 1304
SCN	637	655	646	1067-1101	1059-1090	1065-1105	855, 2046	845, 2049	713, 2059
CO ₃	631	633		1063-1099	1063-1096	1068-1120	1271	1261	1270
SO ₄	632	659	655	1063-1099	1063-1088	1019-1056	609,932	602, 932	610, 857

Частоты валентных колебаний связи Ge-O в ИК-спектрах герматранов и их квази- и гипоаналогов (I, II, III) находятся в пределах (631-695 см⁻¹), что соответствует опубликованным значениям

частот колебаний связи Ge-O в фрагменте GeO₃ (527-679 см⁻¹). Экспериментальные значения частот валентных колебаний связи Ge-X в спектрах I-III полностью соответствуют литературным данным. Валентные колебания связи О-С в ИК-спектрах соединений I-III изменяются в пределах 1019-1120.

В четвертой главе рассматривается кристаллическая и молекулярная структура 1,1-квазигерматрандиола (1,1-дигидрокси-2,8-диокса-5-азагермакана).

Нами установлена кристаллическая и молекулярная структура 1,1-квазигерматрандиола методами рентгеновской дифракции при 155К и рассчитана квантово-химическим методом с использованием теории возмущения Мюллера-Плессета второго порядка (МР2) и валентнорасщепленного базисного набора с поляризационными и диффузными функциями для всех атомов 6-311++G(d,p). Экспериментальные И расчетные параметры молекулы 1,1-квазигерматрандиола представлены в табл. 8 и хорошо согласуются. Общий вид этой молекулы представлен на рисунке 1., слогающие ее атомы представлены эллипсоидами, а атомы водорода не приводятся.

Таблица 8. Экспериментальные и расчетные параметры

Связь	Эксперимент, Å	MP2/6-311++G(d,p)
N1→Ge1	2.1246 (5)	2.207
Ge 1–O1	1.8044 (5)	1.813
Ge1–O2	1.7969 (5)	1.823
Ge1-O3(H) акс.	1.7994 (5)	1.799
Ge1-O4(H) экв.	1.7735 (5)	1.805
O1–C1	1.4288 (8)	1.413
O2–C2	1.4219 (9)	1.411
C1–C3	1.5169 (11)	1.528
C2–C4	1.5238 (10)	1.530
N1-C3	1.4789 (9)	1.472
N1-C4	1.4739 (9)	1.470
N1-Ge1-O1	84.24 (2)	82.3
N1-Ge1-O2	83.99 (2)	81.9
N1-Ge1-O3	177.53 (2)	176.3
N1-Ge1-O4	85.76 (2)	81.1
O3-Ge1-O1	95.44 (2)	101.3
O3-Ge1-O2	94.02 (3)	96.1
O3-Ge1-O4	96.51 (2)	97.5
O1-Ge1-O2	118.15 (3)	116.9
O1-Ge1-O4	119.67 (3)	114.7
$\Delta_{ m Ge}^{*}$	0.16650(5)	0.25943

молекулы 1,1-квазигерматрандиола.

Рисунок 1. Структура молекулы квазигерматрандиола.

Длина N→Ge связи В молекуле квазигерматрандиола (~2.125 Å) на 0,01Å короче, чем в герматраноле (2.135 Å). Это суммарный указывает, что электроноакцепторый эффект (основность) двух геминальных группировок НО выше, чем одной такой группировки в 1-герматраноле. Экзоциклическая экваториальная связь Ge-O₄(H) (~1.77 Å), находящаяся в трансположении к связи N→Ge, короче аксиальной

связи Ge-O₃(H). Это вызвано

донорно-акцепторным взаимодействием. Перенос

 $n \rightarrow \sigma^*$

электронной плотности с атома N на разрыхляющую орбиталь σ^* связи Ge-X (X- заместитель в транс-положении относительно связи N \rightarrow Ge), как известно значительно понижает ее энергию и делает эту связь более прочной и короткой. В то же время эндоциклические связи Ge-O₁ и Ge-O₂ (1.80Å) имеют такую же длину, как и аксиальная связь Ge-O₃(H), т.е. вопреки ожиданию аксиальная связь не является самой длиной из связей Ge-O. Это можно объяснить взаимодействием неподеленной электронной пары аксиального атома кислорода O₃(H) и разрыхляющей орбитали σ^* N \rightarrow Ge, что приводит к некоторому уменьшению длины аксиальной связи Ge-O₃(H). Аксиальный угол N \rightarrow Ge-O₃ (177,5°) близок к линейному.

Пятая глава посвящена квантовохимическому исследованию стереоэлектронного строения 1-фторгерматрана, 1,1-дифторквазигерматрана и 1,1,1-трифторгипогерматрана.

С целью изучения влияния числа высокоэлектроотрицательных заместителей у атома германия на длину и прочность координационной связи N→Ge нами был проведен квантовохимический расчет молекул 1-фторгерматрана, 1,1-дифторквазигерматрана и 1,1,1-трифторгипогерматрана. Для сравнения были рассчитаны изоструктурные молекулы, в которых все атомы фтора замещены на атомы гораздо менее электроотрицательного водорода. Полученные данные, представленные в табл. 9,

Таблица 9. Зависимость длины координационной связи N→Ge от количества и природы заместителей (F, H)

Соединения	Длина координационной связи N→Ge , Å	Длина координационной связи N→Ge , Å
FGe(OCH ₂ CH ₂) ₃ N	2.329	2.415
F ₂ Ge(OCH ₂ CH ₂) ₂ NH	2.281	2.693
F ₃ Ge(OCH ₂ CH ₂)NH ₂	2.213	2.959

свидетельствуют, увеличение что числа высокоэлектроотрицательных атомов фтора у атома германия (соответственно уменьшение числа координационных циклов в молекуле) существенно сокращает длину связи N→Ge 2.21 Å (2.33,2.28, соответственно) a, следовательно, повышает ее прочность. Это объясняется повышением суммарной электроотрицательности заместителей y

Соединения

HGe(OCH₂CH₂)₃N

H₂Ge(OCH₂CH₂)₂NH H₃Ge(OCH₂CH₂)NH₂

центрального атома Ge. В противоположность этому замена всех атомов фтора на атомы водорода приводит к значительному ослаблению координационной связи при переходе от трициклического герматрана к моноциклическому аналогу (2.42, 2.69, 2.96 Å соответственно).

Связь Ge-N в гетероциклической молекуле 1,1,1-трифторгипогерматрана близка к ковалентной. Ее можно отнести к классу драконоидов. «Исключение» координационной связи N→Ge путем поворота фрагмента NH₂ вокруг связи C-C приводит к нециклическому конформеру этой молекулы, которому также принадлежит минимум на поверхности потенциальной энергии, лежащий однако выше циклической формы на 11 ккал\моль. Эту энергию можно рассматривать как энергию трансанулярной связи.

Об увеличении прочности координационной связи N→Ge при переходе от трициклического к моноциклическому соединению также свидетельствуют экспериментальные значения частот валентных колебаний координационной 1 1-лифторквазигерматрана и 1 1 1-трифторгицо

Таблица 10. Значения частот валентных колебаний фторпроизводных соединений

	$\Gamma(\text{GeO}_3)$	г(Ge-F)	r(N → Ge)
N(CH ₂ CH ₂ O) ₃ GeF	658/ 557	275	228
HN(CH ₂ CH ₂ O) ₂ GeF ₂	660/599	260, 279	247
H ₂ NCH ₂ CH ₂ OGeF ₃	- /591	278, 290	278

валентных колебаний координационной связи N→Ge 1-фторгерматрана, 1,1-дифторквазигерматрана и 1,1,1-трифторгипогерматрана (табл. 10).

Таким образом, увеличение числа электроотрицательных заместителей у атома Ge, приводит к сокращению длины координационной связи N→Ge и следовательно повышению ее прочности.

<u>В главе шестой</u> рассматривается биологическое действие герматранов, квазигерматранов и гипогерматранов на микроорганизмы (гирбы и бактерии).

Как известно, герматраны также как и силатраны обладают специфической биологической активностью. Влияние герматранов, квази- и гипогерматранов на жизнедеятельность микроорганизмов до наших исследований не изучалось (совместно с А.В.Гарабаджиу и Г.Г.Няниковой). Мы изучали влияние некоторых герматранов и их квази- и гипоаналогов на микроорганизмы (грибы и бактерии), широко распространенные в окружающей среде (табл. 11-13).

Влияние некоторых герматранов и их квази- и гипоаналогов грибы поверхностной плесени изучалось на культурах Alternaria alternata и Aspergillus niger (таблицы 11 и 12).

№	Соединение	Рост культуры	Спороношение
1	FGe(OCH ₂ CH ₂) ₃ N	-	-
2	IGe(OCH ₂ CH ₂) ₃ N	+	+
3	F2Ge(OCH2CH2)2NH	-	-
4	Cl ₂ Ge(OCH ₂ CH ₂) ₂ NH	+	+
5	I2Ge(OCH2CH2)2NH	+	+
6	F ₃ Ge(OCH ₂ CH ₂)NH ₂	-	-
7	Cl ₃ Ge(OCH ₂ CH ₂)NH ₂	+	+

Таблица 11.Влияние германиевых препаратов на грибы поверхностной плесени *Alternaria alternata*

Гриб Alternaria alternata – является самым распространенным вредителем сельскохозяйственных культур (погибает до 40% урожая в год). Грибы Alternaria alternata, заселяющие растения, культивируемые в помещениях, вызывают у людей общую аллергию (сенная лихорадка, астма).

«+» - стимулирует, «-» - подавляет

Согласно данным табл. 11 биоцидное

действие на исследуемую культуру оказывают все фторпроизводные.

№	Препарат	Рост культуры	Спороношение
1	FGe(OCH ₂ CH ₂) ₃ N	-	-
2	IGe(OCH ₂ CH ₂) ₃ N	+	+
3	F ₂ Ge(OCH ₂ CH ₂) ₂ NH	-	-
4	Cl ₂ Ge(OCH ₂ CH ₂) ₂ NH	+	+
5	I ₂ Ge(OCH ₂ CH ₂) ₂ NH	+	+
6	F ₃ Ge(OCH ₂ CH ₂)NH ₂	-	-
7	Cl ₃ Ge(OCH ₂ CH ₂)NH ₂	+	+

Таблица 12. Влияние германиевых препаратов на грибы поверхностной плесени Aspergillus niger

Гриб *Aspergillus niger* — способен вызывать тяжелейшие отравления людей и животных, часто завершающиеся летальным исходом. Несмотря на это штаммы *Aspergillus niger* применяются для производства лимонной кислоты и сахаристых веществ.

Согласно данным табл.12 изученные фторпроизводные герматрана и его квази- и

«+» - стимулирует, «-» - подавляет

гипоаналога подавляют эту культуру и могут быть использованы на практике. Остальные изученные германиевые атраны стимулируют рост *Aspergillus niger* и могут применяться в производстве лимонной кислоты и сахаристых веществ.

Как известно, силикатные бактерии (*Bacillus mucilaginosus*) разрушают здания, строительные конструкции и другие сооружения из силикатных материалов. Базируясь на ограниченных литературных данных, мы пришли к заключению, что некоторые соединения германия при действии на силикатные бактерии могут являться антагонистами стимулирующих их соединений кремния. Мы изучали возможность использования некоторых герматранов и их квази- и гипоаналогов в качестве биоцидов силикатных бактерий (*Bacillus mucilaginosus*). Их биоцидная и биостатическая концентрации приведены в табл. 13

Таблица 11. Биоцидная и биостатическая концентрации
герматранов, квазигерматранов и гипогерматранов по
отношению к силикатной бактерии

Соединение	БЦК %	БСК %
N(CH ₂ CH ₂ O) ₃ GeOOCCH ₃	>0.1	0.01
N(CH ₂ CH ₂ O) ₃ GeCl	>0.1	0.01
N(CH ₂ CH ₂ O) ₃ GeSCN	Не выявлено	Не выявлено
N(CH ₂ CH ₂ O) ₃ GeBr	0.05	0.01
N(CH ₂ CH ₂ O) ₃ GeOH	>0.1	0.05
H ₂ NCH ₂ CH ₂ OGeI ₃	>0.1	0.01
HN(CH ₂ CH ₂ O) ₂ Ge(SCN) ₂	Не выявлено	Не выявлено
$HN(CH_2CH_2O)_2Ge(ClO_4)_2$	>0.1	0.05
H ₂ NCH ₂ CH ₂ OGeBr ₃	0.05	0.01
HN(CH ₂ CH ₂ O) ₂ GeBr ₂	>0.1	0.01

Данные табл. 13 свидетельствуют, что 10^{-2} 5*10⁻² % И волные растворы изученных Ge-замещенных герматранов, гипогерматранов квази-И (3a исключением тиоционатов) подавляют силикатных бактерий. рост Максимальную активность проявляют **Ge-бромзамещенные** герматран И

гипогерматран. Мы надеемся что 1-бромгерматран найдет практическое применение как ингибитор жизнедеятельности силикатных бактерий.

<u>Глава седьмая</u>. Экспериментальная часть

Основными экспериментальными задачами были:

- Разработка методов получения герматранов, квазигерматранов и гипогерматранов, содержащих у атома Ge высокоэлектроотрицательные заместители.
- Изучение кристаллической, молекулярной и стереоэлектронной структуры и биологической активности синтезированных соединений.

Для решения поставленных задач необходимо было разработать методику синтеза исходных гидроксипроизводных герматрана, квазигерматрана и гипогерматрана. Оптимизировать условия проведения реакций. В основу синтеза была положена реакция диоксида германия с соответствующим этаноламином

 $GeO_2 + (HOCH_2CH_2)_n NR_{3-n} + H_2O \longrightarrow R_{3-n}N(CH_2CH_2O)_n Ge(OH)_{4-n}$ (8)

Ge-Замещенные герматраны и их квази- и гипоаналоги с X= F, Cl, Br, I, NO₃, ClO₄, SCN; Y= CO₃, SO₄ были синтезированы в среде этанола, а также в воде (что свидетельствует об их гидролитической устойчивости), путем взаимодействия гидроксипроизводных герматрана и его квази- и гипоаналога с соответствующими солями аммония в соотношении 1:1 для герматранола, 1:2 для квазигерматрандиола и 1:3 для гипогерматрантриола при температуре кипения растворителя (78°C и 100°C соответственно). В соответствии со схемами 1-3, 6, 7 реакция проводилась до прекращения выделения аммиака. Выход продуктов в этих реакциях составил 80-95%.

ИК спектры поглощения (таблетки с KBr и вазелиновое масло) получены на спектрофотометре Varian 3100FT-IR.

Спектры ЯМР ¹H, ¹³C, ¹⁵N, ¹⁹F записаны на спектрометре Bruker DPX 400 (400.13, 100.61, 40.56, и 376.50 МГц соответственно).

Масс-спектры получены на квадрупольном хромато-масс-спектрометре GCMS-QP5050A при энергии ионизации 70эВ с использованием системы прямого ввода образца в источник ионов, т.ист 200°C, т.съемки 185°C и методом электроспрей в ацетонитриле и метаноле на масс-спектрометре Bruker Customer.

Геометрические параметры (длины связей, валентные углы) 1,1-квазигерматрандиола получены на дифрактометре Bruker Smart Apex II.

Квантово-химический расчет молекулы 1.1-квазигерматрандиола проводился по программам Gaussian03 с использованием теории возмущения Мюллера-Плессета второго порядка (MP2) и валентно расщепленного базисного набора с поляризационными и диффузными функциями для всех атомов 6-311++G(d,p).

Методом B3LYP с использованием базисных функций ec-PVDZ проведено квантовохимическое исследование электронного строения и равновесной геометрии молекул X_{4-n}Ge(OCH₂CH₂)_nNH_{3-n} (X= H, F; n=1-3).

Для исследования биологического действия синтезированных герматранов и их квази- и гипоаналогов на жизнедеятельность микроорганизмов использовался метод лунок. В лунки в слое агара вводили раствор исследуемого препарата заданной концентрации, а на поверхность среды вносили тест-культуру. Зону подавления роста микроорганизмов определяли биометрически.

Выводы

- Показано, что в отличие от 1-силатранола, являющегося слабой ОН-кислотой, ОН-группа в герматраноле имеет основный характер. Это позволило разработать простой и удобный способ получения 1-замещенных герматранов XGe(OCH₂CH₂)₃N и Y[Ge(OCH₂CH₂)₃N]₂ (где X= F⁻, Cl⁻, Br⁻, I⁻, NO₃⁻, ClO₄⁻, SCN⁻; Y=CO₃⁻², SO₄⁻²) путем взаимодействия 1-герматранола HOGe(OCH₂CH₂)₃N с солями аммония NH₄X. Таким путем были впервые получены герматраны с X= Br, I, ClO₄, SCN, CO₃, SO₄, NO₃ и др.
- 2. Впервые показано, что химические сдвиги в спектрах ЯМР ¹H, ¹³C и ¹⁵N в синтезированных 1-замещенных герматранах с увеличением электроотрицательности заместителя у атома германия смещаются в сильное поле. Напротив в тех же спектрах ЯМР изоструктурных силатранов XSi(OCH₂CH₂)₃N резонанс протонов, атомов углерода и азота смещается в слабое поле. Это обусловлено большей жесткостью координационного узла N→MO₃-X при M=Ge, чем при M=Si, и как следствие, большей зависимостью химических сдвигов от электроотрицательности, а не от нуклеофугности заместителя X у атома германия.
- 3. Вычисленные значения частот валентных колебаний связи N→Ge закономерно уменьшаются (ClO₄>F>Cl>Br>I) с увеличением рассчитанного расстояния между атомами германия и азота. Однако в кристаллических герматранах зависимость между этой частотой и междуатомным расстоянием N→Ge (Br<Cl<F) оказывается противоположной. Это не соответствует изменению электроотрицательности заместителя у атома германия и соответствует способности этого заместителя функцианализировать как уходящая группа в реакциях нуклеофильного замещения. Различие данных рентгеновской дифракции и квантовохимических расчетов объясняется влиянием кристаллического поля.</p>
- Впервые синтезированы индивидуальные 1,1-бисгидроксиквазигерматран (HO)₂Ge(OCH₂CH₂)₂NR (R= H, Me) и 1,1,1-тригидроксигипогерматран (HO)₃Ge(OCH₂CH₂)NH₂. Кристаллическая, молекулярная и стереоэлектронная структура 1,1-квазигерматрандиола (1,1-бисгидроксиквазигерматрана) установлена методом

рентгеновской дифракции и квантовой химии. Показано, что длина связи N→Ge в 1,1-квазигерматрандиоле короче, чем в 1-герматраноле, что обусловлено большей суммарной электроотрицательностью двух геминальных гидроксильных групп.

- 5. Впервые реакция Воронкова распространена на 1,1-квазигерматрандиол и 1,1,1гипогерматрантриол. Этим путем синтезировано 37 ранее неизвестных 1,1-дизамещенных квазигерматранов X₂Ge(OCH₂CH₂)₂NR (R= H, Me) и 1,1,1-тризамещенных гипогерматранов X₃Ge(OCH₂CH₂)NH₂.
- 6. При замене координационного цикла в молекуле 1-фторгерматрана на атом фтора, т.е. с увеличением суммарной электроотрицательности заместителей у центрального атома германия, прочность координационной связи N→Ge возрастает. Замена координационных циклов на атомы водорода напротив приводит к уменьшению суммарной электроотрицательности заместителей, а следовательно к ослаблению координационной связи N→Ge.
- 7. Обнаружено фунгицидное и бактерицидное действие герматранов, квазигерматранов и гипогерматранов на грибы поверхностной плесени (Alternaria alternata и Aspergillus Niger) и силикатную бактерию (Bacillus mucilaginosus). Фторпроизводные герматранов и их квази- и гипоаналогов подавляют рост грибов Alternaria alternata и Aspergillus Niger. Все изученные герматраны, квази- и гипогерматраны подавляют рост силикатной Bacillus mucilaginosus. Наиболее эффективными бактерии ИЗ них являются 1-бромгерматран и 1,1,1-трибромгипогерматран. Их биоцидная и биостатическая концентрации практически одинаковы – 5*10⁻² и 10⁻²% соответственно.

Список публикаций

- Г. С. Самохин, Д. В. Вражнов, Т. А. Кочина, М. Г. Воронков. Квазигерматраны и их моноциклические аналоги с высокоотрицательным заместителем у атома германия. Новая стратегия синтеза // ЖФХС. 2010. ТЗ6. №5. С.794-799.
- М. Г. Воронков, Т. А. Кочина, Д. В. Вражнов, Г. С. Самохин, А. И. Албанов,
 Т. Н. Аксаментова, Л. В. Клыба, Н. Н. Чипанина. Новый метод синтеза 1-галогенгерматранов, герматраниловых эфиров Н-О-кислот и их стереоэлектронное строение // ЖОХ. 2008. Т.78. №12. С. 1994-1998.
- А.В.Гарабаджиу, академик М.Г.Воронков, Г.Г.Няникова, Г.С.Самохин, Д.В.Вражнов, Т.А.Кочина. Влияние силатранов, герматранов, протатранов и триэтаноламина на жизнедеятельность микроорганизмов // ДАН. 2011. Т.439. №6. с.1-3.
- М.Г.Воронков, Г.С.Самохин, Д.В.Вражнов, Т.А.Кочина. Новые внутрикомплексные соединения пентакоординированного германия. Гипогерматраны – Ge замещенные (N→Ge) 2-окса-5-аза-1-гермациклопентан // ЖОХ. 2011. Т.81. вып.12. с. 1-2.

- 5. Г.С.Самохин. 1-замещенные герматраны //Тезисы докладов IX Молодежной научной конференции, посвященной 60-летию Института химии силикатов РАН. С-Пб. 2008. С. 71.
- Г.С. Самохин. Новые пути синтеза Ge-содержащих атрановых соединений и их аналогов // Тезисы докладов X Молодежной конференции ИХС РАН. С-Пб. 2009. С. 77.
- Г.С. Самохин. Ge-содержащие атрановые соединения с высокоэлектроотрицательным заместителем у атома германия. // Тезисы докладов XI Молодежной конференции ИХС РАН. С-Пб. 2010. С.141.
- 8. Г.С.Самохин, Т.А.Кочина, Д.В.Вражнов, М.Г.Воронков. Новый метод синтеза галогенгерматранов и других соединений гипервалентного германия // Тезисы докладов XXIV Международной Чугаевской конфиренции по координационной ХИМИИ И Молодежной конференции-школы «Физико-химические методы В химии координационных соединений». С-Пб. 2009. с. 151.
- Д.В. Вражнов, М.Г. Воронков, И.С. Игнатьев, Г.С. Самохин, Я.В. Агапова. Зависимость строения силатранов, герматранов и их аналогов от числа координационных циклов // XIX Менделеевский съезд по общей и прикладной химии. Волгоград. 2011. Т.1. С.153
- Д.В. Вражнов, И.С. Игнатьев, Т.А. Кочина, М.Ю. Литвинов, Г.С. Самохин, М.Г. Воронков. Силатранилиевые и герматранилиевые ионы //Тезисы докладов XVIII Менделеевского съезда по общей и прикладной химии в пяти томах. М.: Граница. 2007. Т. 1. С.155.
- 11. А.В. Гарабаджиу, М.Г. Воронков, Г.Г. Няникова, Г.С. Самохин, Т.А. Кочина. Изучение ростстимулирующего и антифунгального действия силатранов, герматранов, протатранов и триэтаноламина. Тез. докл. Симпозиум «Синтетическая, теоретическая, биологическая и прикладная химия элементоорганических соединений» посвященный 90-летию академика М.Г. Воронкова, Санкт-Петербург, 2011. С.43.
- 12. Г.С. Самохин, Т.А. Кочина, М.Г. Воронков «Новые внутрикомплексные соединения пентакоординированного германия. Гипогерматраны» Тез. докл. Симпозиум «Синтетическая, теоретическая, биологическая и прикладная химия элементоорганических соединений» посвященный 90-летию академика М.Г. Воронкова, Санкт-Петербург, 2011. С.133.