Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В.Гребенщикова Российской академии наук

на правах рукописи laceno

Осипов Александр Владимирович

Синтез и физико-химические свойства наноразмерных ортофосфатов

РЗЭ

Специальность 02.00.04 – физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Санкт-Петербург

Работа выполнена в Федеральном государственном бюджетном учреждении науки Ордена Трудового Красного Знамени Институте химии силикатов им. И.В. Гребенщикова Российской академии наук

Научный руководитель: кандидат химических наук, с.н.с. Мезенцева Лариса Петровна

Официальные оппоненты:

доктор химических наук, зав. лабораторией Бубнова Римма Сергеевна, ИХС РАН

доктор химических наук, профессор Зверева Ирина Алексеевна, Санкт-Петербургский государственный университет

Ведущая организация – Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук.

Защита состоится 28 ноября 2012 г. в 13-00 на заседании диссертационного совета Д 002.007.01 при Институте химии силикатов им. И.В. Гребенщикова РАН по адресу: 199034, г. Санкт-Петербург, наб. Макарова, д. 2.

С диссертацией можно ознакомиться в библиотеке Институте химии силикатов им. И.В. Гребенщикова РАН

Автореферат разослан 25 октября 2012 г.

Ученый секретарь диссертационного совета к.х.н

Punter

Сычева Г.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Развитие современной техники в значительной степени определяется разработкой и внедрением в производство новых материалов, среди которых важное место занимают материалы на основе фосфатов, перспективных в качестве защитных покрытий, катализаторов при дегидрировании бутана и изобутана, окислительном лазерных сред, люминофоров, сцинтилляторов и др. Кроме того, керамика на основе РЗЭ, в том ортофосфатов числе композитная, рассматривается как перспективный конструкционный материал И как материал для иммобилизации радиоактивных отходов.

Высокий уровень надёжности иммобилизации высокоактивных отходов актинид-редкоземельной фракции, может обеспечить лишь включение их в керамические материалы с высокой химической стойкостью и большой изоморфной ёмкостью по отношению к изотопам этой группы. К таким материалам в настоящее время относят керамику Synroc, NZPкерамику и стеклокерамику.

Конкуренцию им могут составить керамические материалы из нанокристаллических ортофосфатов РЗЭ, так как известно, что указанные ортофосфаты являются химической стойкими по отношению к водным растворам HCl, H_2SO_4 , HNO₃, NaOH, NH₄OH, по отношению к агрессивным расплавам металлов, в том числе урана, а также являются тугоплавкими – плавятся при температуре около 2000°С.

Предполагается, что наноразмерные ортофосфаты РЗЭ позволят увеличить изоморфную емкость по отношению к высокоактивным отходам, при этом керамика из нанопорошков будет обладать высокой прочностью и трещиностойкостью. Для получения продукта высокой дисперсности и заданного химического состава с однородным распределением элементов в продукте осаждения предполагается использовать золь-гель метод, в полной мере отвечающий этим требованиям.

Разработка физико-химических основ получения керамики – важная техническая и технологическая задача. Для её осуществления требуется исследовать физико-химические свойства как индивидуальных наноразмерных ортофосфатов РЗЭ, так и их бинарных композиций.

Цели и задачи исследования:

Получение нанопорошков ортофосфатов РЗЭ различного состава и керамики на их основе. Оценка влияния дисперсности на физико-химические свойства и изоморфную емкость ортофосфатов РЗЭ.

Задачей данной работы являлось получение наноразмерных ортофосфатов РЗЭ в системах YPO_4 -LuPO_4-H₂O, LaPO_4-DyPO_4-H₂O, LaPO_4-LuPO_4-H₂O и LaPO_4-YPO_4-H₂O, изучение их физико-химических свойств и получение плотной керамики на их основе.

Научная новизна и выносимые на защиту результаты:

отработана методика золь-гель синтеза наноразмерных ортофосфатов
 РЗЭ;

 определено и систематизировано влияние дисперсности на физикохимические свойства наноразмерных ортофосфатов РЗЭ и их структурные особенности;

– впервые изучены бинарные системы YPO₄–LuPO₄–H₂O, LaPO₄– DyPO₄–H₂O, LaPO₄–LuPO₄–H₂O и LaPO₄–YPO₄–H₂O во всем диапазоне концентраций; оценено влияние дисперсности на изоморфные замещения в указанных системах;

– разработана методика получения плотной низкопористой керамики на основе нанопорошков ортофосфатов $Ln'_{1-x}Ln''_xPO_4(\cdot nH_2O)$; оценено влияние дисперсности на микроструктуру и микротвердость керамики.

Практическая значимость работы:

Керамика на основе наноразмерных порошков ортофосфатов РЗЭ рассматривается как перспективный конструкционный материал – она демонстрирует высокую термическую стойкость (температура плавления

ортофосфатов РЗЭ около 2000°С), коррозионную стойкость и химическую инертность, прекрасную спекаемость и низкую пористость уже при 1000°С, с микротвердостью 5–6 ГПа, значения которой возрастают с ростом температуры.

По результатам исследования составлена и подана заявка на патент, которая успешно прошла формальную экспертизу (МКИ: С04В 35/447, С04В 35/50, С04В 35/624, Способ получения керамики на основе ортофосфатов редкоземельных элементов; ИХС РАН, № 2012123785; заявл. 07.06.12)

Такая керамика может быть перспективной для создания нового поколения энергетических высокотемпературных микротурбогенераторных установок (альтернативная энергетика).

<u>Достоверность полученных результатов</u> основана на комплексном использовании современных методов физико-химического анализа и подтверждается их воспроизводимостью

термообработка, Личный вклад соискателя. Синтез образцов, измерения, анализ и обобщение экспериментальных данных выполнено Участие соискателем. соавторов заключалось лично В проведении совместных экспериментальных исследований (дифференциальнодифференциальная сканирующая термический анализ, калориметрия, электронная микроскопия). Обработка и интерпретация данных, подготовка научных статей и тезисов докладов на научных конференциях, а также диссертации выполнены автором.

Апробация работы. Основные результаты работы доложены на Научной конференции по неорганической химии И радиохимии, посвященной 100-летию со дня рождения академика В.И. Спицына (Москва, 17–18 апреля 2002, хим. факультет МГУ); на VIII Всероссийском совещании «Высокотемпературная химия силикатов и оксидов» (Санкт-Петербург, 19-21 ноября 2002); на XV Всероссийском симпозиуме «Современная химическая физика» (Москва, МГУ, 2003); на международной конференции

Topical meeting of the European Ceramics Society «Nanoparticles, Nanostructures & Nanocomposites» (Санкт-Петербург, 5-7 июля 2004); на международной конференции «Functional Materials» ICFM-2005 (Партенит, Крым, Украина, 3-8 октября 2005); на 9-ом Международном симпозиуме «Порядок, беспорядок и свойства оксидов» – ОДРО-9 (Россия, Ростов-на-Дону, п. Лоо, 19–23 сентября 2006); на международной конференции Topical Meeting of the European Ceramic Society «Structural Chemistry of Partially Ordered Systems, Nanoparticles and Nanocomposites», (Санкт-Петербург, 27–29 июня 2006); на 10-ом Международный симпозиуме «Порядок, беспорядок и свойства оксидов» – ОДРО-10 (Россия, Ростов-на-Дону, п. Лоо, 12–17 сентября 2007); на Международном форуме по нанотехнологиям (Москва, РОСНАНОТЕХ, 2008); на Молодежных научных конференциях ИХС РАН 2002, 2003, 2005, 2006, 2009; на Российской конференции – научной школе молодых ученых «Новые материалы для малой энергетики и экологии. Проблемы и решения», посвященной 80-летию академика Я.Б. Данилевича (Санкт-Петербург, 22–23) ноября 2011, Институт химии силикатов им. И.В. Гребенщикова РАН); на Второй конференции стран СНГ «Золь-гель синтез и исследование неорганических соединений, гибридных функциональных материалов и «Золь-гель-2012»» (Украина, Севастополь, дисперсных систем 18 - 20сентября 2012).

Работа поддержана грантами РФФИ (11-08-00801-а), ОХНМ РАН (2006–2008 гг. и в 2012 г. программой «Создание новых металлических, керамических, стекло-, полимерных и композиционных материалов») и Федеральной целевой программой (2012–2013 гг., 2012-1.2.2-12-000-2003-472); школой академика В.Я. Шевченко «Химия, физика и биология наноразмерного состояния» (2006–2008 гг.), «Химия, биология и физика наноразмерного состояния. Исследование процессов формирования химических веществ и материалов» (2010–2011 гг.); грантами Санкт-Петербургского научного центра в 2001 и 2003 гг.

<u>Публикации</u>. Результаты работы опубликованы в 5 статьях в научных журналах, рецензируемых ВАК, 1 статье в сборнике, 16 тезисах материалов научных конференций.

<u>Структура и объем диссертации</u>. Диссертация состоит из введения, 6 глав, выводов, списка цитируемой литературы. Общий объем диссертации составляет 120 страниц текста, включает 10 таблиц, 56 рисунков и список литературы из 139 ссылок.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении дано обоснование актуальности темы диссертации, определены важность и перспективность синтеза и исследования нанокристаллических ортофосфатов РЗЭ, поставлены цели и задачи исследования.

В <u>первой главе</u> обобщены и проанализированы современные литературные данные по кристаллической структуре, синтезу и физикохимическим свойствам индивидуальных ортофосфатов РЗЭ и твердых растворов на их основе. Уделено также внимание работам, посвященным получению и изучению свойств керамики на основе ортофосфатов РЗЭ.

Приведены основные структурные типы кристаллических решеток, в которых кристаллизуются ортофосфаты РЗЭ и их природные аналоги. К ним относятся минерал монацит, имеющий моноклинную сингонию (CePO₄, пр. гр. $P2_1/c$, Z = 4), минерал ксенотим тетрагональной сингонии (YPO₄, пр. гр. $I4_1/amd$, Z = 4), изоструктурный минералу циркону (ZrSiO₄), и менее распространенная водная форма – рабдофанит гексагональной сингонии (CePO₄·H₂O, пр. гр. $P6_222$, Z = 3). Показано существующее разнообразие данных по кристаллическим структурам синтетических ортофосфатов РЗЭ, особенно водных форм, что свидетельствует, по-видимому, о значительном влиянии молекул воды на формирование той или иной кристаллической

структуры. В связи с этим высказано предположение о возрастании этого влияния при уменьшении размера кристаллов.

Рассмотрены разнообразные методы синтеза водных и безводных форм ортофосфатов РЗЭ (золь-гель, гидротермальный, метод твердофазных химических реакций). Сделан вывод о том, что наиболее доступным и надежным с точки зрения получения продукта заданного химического состава и дисперсности является золь-гель метод получения ортофосфатов РЗЭ, в частности, их водных форм, где осадителем служит однозамещенный фосфат аммония.

Рассмотрены также физико-химические свойства ортофосфатов РЗЭ, которые показывают высокие температуры плавления и закономерное изменение свойств в ряду ортофосфатов РЗЭ (температура фазовых переходов повышается, а температура плавления несколько снижается).

Отмечена высокая химическая стойкость соединений по отношению к водным растворам HCl, H_2SO_4 , HNO₃, NaOH, NH₄OH при 20°C, не обнаружено также заметного взаимодействия ортофосфатов P3Э с порошкообразными SiO₂, TiO₂, Al₂O₃, ZrO₂ и ZrSiO₄ при их совместном спекании на воздухе при 1600°C и с Al₂O₃ при 1750°C.

Сделан вывод о том, что все эти свойства определяют перспективность использования ортофосфатов РЗЭ в различных областях современной техники.

Рассмотрены твердые растворы, образующиеся между ортофосфатами РЗЭ. Из представленного обзора следует, что в системах, в которых компоненты принадлежат одному структурному типу, образуются непрерывные серии твердых растворов (LaPO₄–CePO₄, LaPO₄–GdPO₄(–H₂O), $CePO_4$ -TbPO_4), а системы, в которых компоненты принадлежат разным структурным типам, характеризуются ограниченной взаимной растворимостью (LaPO₄-YPO₄(-H₂O), CePO₄-YPO₄, NdPO₄-YPO₄, SmPO₄-YPO₄). Сделан вывод о том, что концентрационные области существования

ограниченных гексагональных, моноклинных или тетрагональных твердых растворов, по-видимому, во многом зависят как от разницы в размерах ионных радиусов РЗЭ, так и от метода их синтеза и дисперсности образующихся продуктов. Подчеркнуто также, что изоморфная емкость моноклинной гексагональной И структуры значительно превышает изоморфную емкость тетрагональной. В этом разделе приведены данные теоретических расчетов области несмешиваемости на основании модели регулярных твердых растворов для систем LaPO₄-YPO₄ и CePO₄-YPO₄ и для некоторых других систем монацит-ксенотим, при этом отмечена асимметричность области несмешиваемости В этих системах, т.е. экспериментальные данные подтверждены расчетными.

Рассмотрена керамика на основе ортофосфатов РЗЭ и ее свойства. В литературе подчеркнута ее высокая термическая стабильность и химическая стойкость, определяемая соответствующими свойствами самих ортофосфатов РЗЭ. Кроме того, отмечена способность фосфатной керамики к механической обработке, ее довольно высокая микротвердость, износостойкость, огнеупорность, стабильность в окислительной среде.

В литературе представлены возможные механизмы процессов спекания керамики на основе ортофосфатов РЗЭ. На основании проведенных различными авторами исследований найдена оптимальная температура спекания исходных гексагональных порошков для получения плотной керамики, которая лежит в интервале 1200–1450°С. Однако отмечено, что наличие примесной фазы в виде метафосфата РЗЭ (LnP₃O₉), образовавшегося в процессе синтеза при использовании H₃PO₄ в качестве осадителя, двояко влияет на процесс спекания. С одной стороны, ее присутствие снижает температуру спекания, с другой – способствует быстрому росту зерен, что приводит К образованию зерен с большим крупных количеством межзеренных пор, которые трудно удаляются. Избавиться от нежелательной исследователи предлагают путем термообработки исходных примеси

порошков ортофосфатов при 1400°С (метафосфаты РЗЭ разлагаются около 1200°С с выделением Р₂O₅).

На основании изложенного материала в этой главе сделан вывод, что в большинстве перечисленных работ рассмотрена керамика на основе индивидуальных ортофосфатов (LnPO₄) и почти не рассмотрена возможность использования их твердых растворов или их смесей (т.е. двухфазные области), хотя известно, что второй компонент, образующий с матрицей твердый раствор, может играть роль спекающей добавки.

Кроме того, не рассмотрено влияние дисперсности полученных продуктов на микроструктуру и, следовательно, механические и теплофизические свойства керамики, как на основе индивидуальных соединений, так и на основе твердых растворов или их смесей.

В целом золь-гель метод, как отмечено в некоторых работах, дает возможность выделения из маточного раствора макромолекул в виде трехмерных сеток, содержащих катионы, смешанные на атомном уровне, обеспечивая тем самым однородное распределение элементов в продукте осаждения и монофракционный гранулометрический состав. При правильном подборе взаимодействующих компонентов метод позволяет получать плотную керамику без видимых трещин.

На основании всего вышеизложенного в конце главы сформулированы цели и задачи исследования.

Вторая глава содержит описание методики синтеза наноразмерных индивидуальных ортофосфатов РЗЭ (LnPO₄·nH₂O) и бинарных композиций в системах YPO₄–LuPO₄–H₂O, LaPO₄–DyPO₄–H₂O, LaPO₄–LuPO₄–H₂O и LaPO₄–YPO₄–H₂O, методы анализа продуктов синтеза и исследования физико-химических свойств.

Синтез наночастиц LnPO₄·nH₂O (Ln = La, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Lu, Y) и Ln'_{1-x}Ln''_xPO₄·nH₂O (Ln' = La, Y; Ln'' = Dy, Lu, Y) проводили зольгель методом: осаждением однозамещенным фосфатом аммония при

комнатной температуре и pH около 7 из растворов азотнокислых солей РЗЭ, полученных растворением в азотной кислоте соответствующих оксидов, по следующей реакционной схеме:

$$(1-x)\operatorname{Ln'}_{2}O_{3} + x\operatorname{Ln''}_{2}O_{3} + 6\operatorname{HNO}_{3} \xrightarrow{t, \circ C} 2\operatorname{Ln'}_{(1-x)}\operatorname{Ln''}_{x}(\operatorname{NO}_{3})_{3} + 3\operatorname{H}_{2}O$$

$$\operatorname{Ln'}_{(1-x)}\operatorname{Ln''}_{x}(\operatorname{NO}_{3})_{3} + \operatorname{NH}_{4}\operatorname{H}_{2}\operatorname{PO}_{4} \xrightarrow{pH} \operatorname{Ln'}_{(1-x)}\operatorname{Ln''}_{x}\operatorname{PO}_{4} + \operatorname{NH}_{4}\operatorname{NO}_{3} + 2\operatorname{HNO}_{3}$$

На первой стадии золь-гель процесса, как известно, формируется химический состав продукта, который получается в виде высокодисперсного коллоидного раствора – золя – взвешенных частиц дисперсной фазы ортофосфатов РЗЭ. За счет введения водного раствора аммиака, приводящего к коагуляции коллоидных частиц ортофосфатов, начинается вторая стадия золь-гель процесса – структурирование (гелеобразование).

В качестве исходных веществ для получения индивидуальных и смешанных ортофосфатов РЗЭ использовали следующие реактивы: оксиды РЗЭ с содержанием основного вещества 99.95–99.99%; однозамещенный фосфат аммония NH₄H₂PO₄ квалификации «осч»; азотную кислоту HNO₃ квалификации «осч» и концентрации 35%; водный раствор аммиака NH₄OH квалификации «осч»; дистиллированную воду.

Термическую обработку полученных порошков ортофосфатов РЗЭ, запрессованных в таблетки, проводили ступенчато на воздухе до 1000–1100°С.

Методами анализа полученных продуктов служили рентгенофазовый анализ (РФА, ДРОН-3, Си K_{α} -излучение, никелевый фильтр); термический анализ (на дериватографе системы Паулик-Паулик-Эрдей Q-1500 в диапазоне 25–1000°С со скоростью нагрева 10°/мин (ДТА/ТГ) или на установке STA 429 NETZSCH (ДСК/ТГ) со скоростью нагрева 10°/мин и 20°/мин в диапазоне 25–1100°С); электронная микроскопия (ЭМ-125 (U_{уск} = 75 кВ); атомно-силовая микроскопия (NTEGRA).

Керамические материалы спекались из нанопорошков, запрессованных в таблетки под давлением 8–10 МПа, при 1000°С в течение 6, 12 и 24 ч.

Размер частиц порошков ортофосфатов рассчитывали по формуле Шеррера, а также оценивали по микрофотографиям образцов; микроструктуру керамики определяли по микрофотографиям, полученным с внутреннего излома раздробленной таблетки с помощью целлулоидной угольной реплики. Кроме того, топографию поверхности с излома раздробленных таблеток после обжига при 1000°C и размер зерен керамических материалов оценивали с помощью снимков на атомно-силовом микроскопе NTEGRA.

Дилатометрию проводили на запрессованных в таблетки под давлением 8–10 МПа нанопорошках на приставке DIL 402 C (NETZSCH). Скорость нагрева – 10°/мин в интервале температур 25–1650°C.

Микротвердость керамики определяли методом Виккерса на микротвердомере ПМТ 3 на образцах, запрессованных в таблетки под давлением 8–10 МПа и обожженных при 1000°С в течение 6, 12, 24 ч.

Пористость материала оценивали по разнице значений кажущейся и рентгеновской плотности.

В <u>третьей главе</u> описаны полученные золь-гель методом наноразмерные порошки индивидуальных ортофосфатов РЗЭ (LnPO₄·*n*H₂O) и их физико-химические свойства.

Методом РФА установлена принадлежность синтезированных ортофосфатов La–Eu к гексагональной сингонии; ортофосфаты Tb и Dy рентгеноаморфны (рис. 1, a), а ортофосфаты Ho, Er, Lu и Y имеют тетрагональную структуру (рис. 1, δ).

Сильно уширенные, а иногда практически не проявляющиеся рефлексы на рентгеновских дифрактограммах образцов свидетельствуют о том, что исходные образцы ортофосфатов являются наноразмерными. Средний размер частиц, рассчитанный по формуле Шеррера, составляет 5–20 нм.

Рис. 1. Рентгеновские дифрактограммы наночастиц ортофосфатов $LnPO_4 \cdot nH_2O$ первой подгруппы, полученных при комнатной температуре для Ln: a - 1 - La, 2 - Pr, 3 - Nd, 4 - Sm, 5 - Eu, 6 - Tb, 7 - Dy; 6 - 1 - Y, 2 - Ho, 3 - Er, 4 - Lu.

Снимки, полученные с помощью электронной просвечивающей микроскопии, подтверждают это (рис. 2)

б)

Рис. 2. Микрофотография наночастиц: *a* – LaPO₄·*n*H₂O; *б* – HoPO₄·*n*H₂O (просвечивающая электронная микроскопия).

Нами отмечено, что на размер кристаллизирующихся наночастиц температура раствора и продолжительность контакта осадка с маточным раствором (время вызревания) оказывают большее влияние, чем концентрация реагентов в исходном растворе.

Анализ термического поведения образцов показал, что ортофосфаты от лантана до диспрозия, принадлежащие гексагональной сингонии, теряют

воду в два этапа, что связано с особенностью структуры этой группы фосфатов (адсорбированную с поверхности и из структурных каналов, куда встраиваются молекулы воды). Этим этапам соответствуют два эндотермических эффекта в интервале 80–250°С.

Дальнейшее нагревание ортофосфатов первой подгруппы (La–Dy) приводит к переходу около 600°С гексагональной формы (рис. 1, *a*) в моноклинную, устойчивую до температуры исследования – 1000°С (рис. 3, *б*).

Ортофосфаты второй подгруппы (Ho–Lu, Y), по нашим данным, не претерпевают никаких структурных изменений при нагревании, сохраняя тетрагональную решетку до 1000°С (рис. 4).

Рис. 3. Рентгеновские дифрактограммы ортофосфатов LnPO₄: I – La, 2 – Pr, 3 – Nd, 4 – Sm, 5 – Eu, 6 – Tb, 7 – Dy, после обжига (1 ч) при температуре: a – 600°C, δ – 1000°C, и штрихдиаграммы из базы данных ICDD образцов LaPO₄.

Таким образом, индивидуальные наноразмерные ортофосфаты $LnPO_4 \cdot nH_2O$, как и в случае объемных образцов, данные о которых имеются в литературе, делятся на две структурные подгруппы.

Первая подгруппа (ортофосфаты La–Dy) характеризуется гексагональной формой, как правило, образующейся при золь-гель синтезе, при нагревании около 600°С необратимо переходящей в моноклинную форму. Вторая подгруппа ортофосфатов РЗЭ (Ho–Lu, Y) уже при низких

температурах кристаллизуется в тетрагональной форме, которая сохраняется до высоких температур.

Рис. 4. Рентгеновские дифрактограммы ортофосфатов LnPO₄ после обжига при 1000°С (1 ч), для Ln: 1 – Y, 2 – Ho, 3 – Er, 4 – Lu, и штрихдиаграмма из базы данных ICDD образца YPO₄.

<u>Четвертая глава</u> посвящена синтезу бинарных композиций в системах YPO₄-LuPO₄-H₂O, LaPO₄-DyPO₄-H₂O, LaPO₄-LuPO₄-H₂O и LaPO₄-YPO₄-H₂O во всем диапазоне концентраций, изучению их физико-химических свойств и оценке влияния дисперсности на изоморфные замещения в этих системах.

Показано, что в системах, в которых компоненты принадлежат одному структурному типу, образуются непрерывные серии твердых растворов.

Так, в системе YPO_4 –LuPO₄–H₂O (оба компонента имеют тетрагональную кристаллическую решетку типа ксенотима) во всем диапазоне концентраций и изученных температур (25–1100°C) наблюдается полная взаимная растворимость (рис. 5, *a*, *б*).

Рис. 5. Рентгеновские дифрактограммы образцов $Y_{1-x}Lu_xPO_4 \cdot nH_2O$ для *x*: 0.0 (1), 0.25 (2), 0.5 (3), 0.75 (4), 1.0 (5), *a* – исходных; *б* – после обжига при

1100°С (1 ч), и штрихдиаграммы из базы данных ICDD соответствующих образцов YPO₄·3H₂O и LuPO₄·3H₂O или YPO₄·и LuPO₄.

Кривые ДСК образцов $Y_{1-x}Lu_xPO_4$ представлены на рис. 6. У образца $YPO_4 \cdot nH_2O$ (кривая *1*) можно отметить четыре выраженных термических

Рис. 6. Кривые ДСК/ТГ образцов Y_{1-} _xLu_xPO₄·nH₂O: (1') – кривая потери массы образца YPO₄·nH₂O; YPO₄·nH₂O (1), Y_{0.75}Lu_{0.25}PO₄·nH₂O (2), Y_{0.5}Lu_{0.5}PO₄·nH₂O (3), Y_{0.25}Lu_{0.75}PO₄·nH₂O (4), LuPO₄·nH₂O (5).

Рис. 7. Зависимость среднего размера зерна (D) образцов Y_{1-} _xLu_xPO₄(\cdot nH₂O) от температуры термообработки (1 ч).

эффекта: при 80°С, 365, 613 и 665°С соответственно. Эндотермическому 80°С соответствует эффекту при значительная потеря массы образца (кривая 1'). С увеличением Lu^{3+} концентрации начало экзотермических эффектов смещается, причем два ИЗ них, наблюдаемые при более высокой температуре, сливаются В ОДИН уширенный пик, начинающийся при 610°C для образца состава Y_{0.75}Lu_{0.25}PO₄, и при 570°C ДЛЯ LuPO₄ (кривые 4 и 5).

На рис. 7 представлены зависимости среднего размера зерна образцов, рассчитанного по формуле Шеррера, от температуры обжига. Они показывают наличие двух характеристических температур $T_1 =$ 500–600°C и $T_2 = 900–1000(1100)$ °C, при которых наблюдается наиболее интенсивный рост зерен.

первом этапе мы связываем с активизацией процесса массопереноса по

поверхности и по объему зерен за счет удаления воды из образцов, уплотнения микроструктуры в процессе спекания и оформления границ зерен, на втором этапе (900–1000°С) – с поглощением мелких зерен более крупными (рекристаллизационное поглощение) и коалесценции пор. Отмечено, что для большинства образцов рост зерен еще не заканчивается при 1100°С. Ход этих кривых, по нашему мнению, коррелирует с видом зависимостей на рис. 7, т.е. экзотермические эффекты (около 600°С и выше) соответствуют процессу интенсивного роста зерен ортофосфатов после удаления воды из образцов.

Показано, что другая система – LaPO₄-DyPO₄-H₂O, в которой компоненты кристаллизуются в гексагональной форме типа рабдофанита, демонстрирует наличие непрерывной серии твердых растворов La₁₋ $_x$ Dy_xPO₄·*n*H₂O, гексагональных до 600°C и моноклинных до 1000°C (рис. 8, a-e). Способность DyPO₄ кристаллизоваться в тетрагональной сингонии при повышенных температурах приводит к тому, что при 1100°C в системе наблюдается разрыв смешиваемости – образование тетрагональных твердых растворов на основе $DyPO_4$ в узкой области концентраций (рис. 8, r), т.е. при этой температуре в системе образуются ограниченные твердые растворы (моноклинные тетрагональные), граница существования И однако тетрагональных твердых растворов точно не установлена.

б)

Рис. 8. Рентгеновские дифрактограммы образцов $La_{1-x}Dy_xPO_4 \cdot nH_2O$, где *x*: 0.0 (1), 0.25 (2), 0.3 (3), 0.4 (4), 0.5 (5), 0.6 (6), 0.7 (7), 0.75 (8), 1.0 (9), *a* – синтезированных золь-гель методом; δ – после обжига при 600°C; *в* – после обжига при 1000°C; *г* – после обжига при 1100°C; и штрихдиаграммы из базы данных ICDD образцов LaPO₄·0.5H₂O и DyPO₄·1.5H₂O или LaPO₄ и DyPO₄.

По-видимому, переход образцов серии твердых растворов ИЗ гексагональной формы в моноклинную можно наблюдать на кривых ДТА (сняты до 1000°С на воздухе) в интервале температур 410-600°С в зависимости от содержания Dy³⁺, сопровождающийся заметной потерей массы, связанной с удалением воды (рис. 9). Для образцов с высоким содержанием Dy^{3+} (x ≥ 0.6) отчетливо проявляются либо один уширенный, либо лва экзотермических эффекта В интервале 530–645°C. не сопровождающиеся потерей массы. По-видимому, эти экзотермические эффекты отвечают началу интенсивного процесса роста зерен высокодисперсной моноклинной формы (рис. 8, а и рис. 9, 6–9). Эти эффекты коррелируют с видом зависимостей среднего размера зерен образцов от температуры (рис. 10). Анализ этой зависимости также показывает наличие двух характеристических температур $T_1 = 500-600^{\circ}$ С и $T_2 = 900-1100^{\circ}$ С, при которых происходит заметное увеличение размера зерен, причем, первая характеристическая температура хорошо согласуется с результатами ДТА (рис. 9).

ис. 9. Кривые ДТА образцов La₁₋ _xDy_xPO₄·nH₂O для x: 0.0 (1), 0.25 (2), 0.3 (3), 0.4 (4), 0.5 (5), 0.6 (6), 0.7 (7), 0.75 (8), 1.0 (9); кривая TГ образца DyPO₄·nH₂O (9').

Системы, в которых компоненты принадлежат разным структурным подгруппам, характеризуются ограниченной взаимной растворимостью уже при низких температурах. Концентрационные области существования ограниченных твердых растворов, по-видимому, во многом зависят как от разницы в размерах ионных радиусов РЗЭ, так и метода синтеза и дисперсности ОТ образующихся продуктов.

Так, в системах LaPO₄-YPO₄-H₂O и LaPO₄-LuPO₄-H₂O имеет место ограниченная взаимная растворимость компонентов. С одной стороны, твердые растворы общей формулы $Ln'_{1-x}Ln''_{x}PO_{4}(\cdot nH_{2}O)$ образуются на основе гексагонального ИЛИ моноклинного ортофосфата лантана, с другой, – на основе тетрагональных YPO₄ или LuPO₄.

Результаты РФА образцов La_{1-} _xY_xPO₄· nH_2O представлены на рис. 11, a-e.

Рис. 11. Рентгеновские

дифрактограммы образцов La₁₋ _xY_xPO₄·nH₂O, где x: 0.0 (1), 0.25 (2), 0.3 (3), 0.4 (4), 0.5 (5), 0.6 (6), 0.7 (7), 0.75 (8), 0.8 (9), 0.85 (10), 0.9 (11) 1.0 (12); *a* – исходных, синтезированных золь-гель методом; δ – после обжига при 600°C; в – после обжига при 1000°C; и штрихдиаграммы из базы

данных ICDD образцов LaPO $_4{\cdot}0.5H_2O$ и $YPO_4{\cdot}3H_2O$ или LaPO $_4$ и $YPO_4.$

Показано, что полученные порошки являются наноразмерными и при температуре синтеза образуются ограниченные твердые растворы замещения на основе гексагонального ортофосфата лантана до концентрации Y^{3+} примерно x = 0.7-0.8 (рис. 11, *a*, *b*, *7*), с одной стороны, и на основе тетрагонального ортофосфата иттрия, с другой. При этом концентрационная область существования тетрагональных твердых растворов невелика и составляет несколько процентов.

Рис. 12. Кривые ДСК образцов La_{1-x}Y_xPO₄·*n*H₂O для *x*: 0.0 (*1*), 0.25 (*2*), 0.3 (*3*), 0.4 (*4*), 0.5 (*5*), 0.6 (*6*), 0.7 (*7*), 0.75 (*8*), 1.0 (*9*); кривые ТГ образцов LaPO₄·*n*H₂O (*1*') и YPO₄·*n*H₂O (*9*').

Кривые ДСК образцов этой 12. системы представлены на рис. Образец $LaPO_4 \cdot nH_2O$ И твердые растворы на его основе демонстрируют два эндотермических эффекта с началом 70 210–261°C, около И которым соответствует заметная потеря массы образца, связанная с удалением воды. Кроме того можно заметить, что с 0.25 концентрации начинает x небольшой проявляться экзотермический эффект, связанный, повидимому, с переходом гексагональной формы твердых растворов В моноклинную. У образца LaPO₄·*n*H₂O этот эффект проявляется не всегда.

Отметим, что с увеличением концентрации Y^{3+} вплоть до x = 1.0второй эндотермический эффект исчезает примерно при концентрации x= 0.7; в то же время при концентрации x \geq 0.6 появляется уширенный

экзотермический эффект малой интенсивности с началом около 690°С, не сопровождающийся потерей массы; который затем становится двойным (x = 0.7 и 0.75), а в случае x = 1.0 – один уширенный с началом при 613°С. Повидимому, эти эффекты отвечают интенсивному процессу роста зерен исходных почти рентгеноаморфных частиц.

По данным термического анализа можно констатировать наличие серии твердых растворов на основе гексагональной модификации в пределах $0 \le x \le x$

0.5. Отметим, что данные РФА (рис. 11, a, δ) не противоречат этому выводу. При 1000°С изоморфная емкость моноклинного LaPO₄ составляет примерно 70 мол. % YPO₄. Растворимость LaPO₄ в тетрагональном YPO₄ при этой температуре не более 10 мол. % (рис. 11, в).

Зависимость среднего размера зерен образцов этой системы от температуры термообработки представлена на рис. 13.

Рис. 13. Зависимость среднего размера зерен (D) образцов La₁₋ $_{x}Y_{x}PO_{4}(\cdot nH_{2}O)$ от температуры обжига Т, °С (1 ч).

Ход кривых показывает, ЧТО наиболее интенсивный рост зерен наблюдается в интервале температур 500-600°С и для некоторых композиций в интервале 900-1000°С, причем первый интервал согласуется с результатами ДСК (рис. 13, 6–9).

Температура плавления образцов La_{1-r}Y_rPO₄, определенная в микропечи общее давление Галахова (аргон, В системе 0.5 МПа), лежит в интервале 2050–1960°С (± 10°С).

Результаты РФА образцов $La_{1-x}Lu_xPO_4 \cdot nH_2O$ представлены на рис. 14, а-в. Из этих данных видно, что частицы ортофосфатов, полученные золь-гель методом, находятся в нанометровом диапазоне (рис. 14, а). Можно, повидимому, предположить наличие ограниченных гексагональных твердых растворов примерно до x = 0.5 - 0.6 (*1*-6). Судить о величине растворимости LaPO₄ в LuPO₄ по рентгеновским дифрактограммам трудно из-за сильного уширения рефлексов (6-8).

Рис. 14. Рентгеновские дифрактограммы исходных образцов La_{1-x}Lu_xPO₄·nH₂O, где х: 0.0 (1), 0.25 (2), 0.3 (3), 0.4 (4), 0.5 (5), 0.6 (6), 0.7 (7), 0.75 (8), 1.0 (9); а – синтезированных золь-гель методом; б – после обжига при 600°С; в – после обжига при 1100°С; и

штрихдиаграммы из базы данных ICDD образцов $LaPO_4 \cdot 0.5H_2O$ и $LuPO_4 \cdot 3H_2O$ или $LaPO_4$ и $LuPO_4$.

Далее гексагональная форма LaPO₄·*n*H₂O и твердых растворов на его основе переходит в моноклинную в интервале 500–600°C (рис. 14, δ). При этом концентрационная область кристаллизации моноклинных твердых растворов остается, по-видимому, примерно такой же, как и гексагональных (не более 60 мол. % LuPO₄, рис. 14, δ , *1–6*). С повышением температуры до 1100°C образуются хорошо закристаллизованные образцы, представляющие собой серию ограниченных твердых растворов на основе моноклинного LaPO₄ (рис. 14, *e*, *1–5*), с одной стороны, и на основе тетрагонального LuPO₄ (рис. 14, *e*, *12–13*), с другой. Образцы с *x* = 0.5–0.8 отвечают смеси этих

твердых растворов (рис. 14, *в*, *6*–*11*), т.е. изоморфная емкость моноклинного LaPO₄ составляет примерно 50 мол. %, а тетрагонального LuPO₄ – 10 мол. %.

Кривые ДСК этой серии образцов представлены на рис. 15. У образцов с гексагональной структурой (до x = 0.5) на первом этапе, как было отмечено в главах 2 и 3, удаляется вода в два этапа. Кривые 3 для всех образцов отражают изменение концентрации паров воды, выделяемой в процессе нагревания (данные масс-спектрометрии). Слабый экзотермический эффект с началом 425–485 °C, наблюдаемый для образцов с концентрацией Lu³⁺ до x = 0.5, относится, по-видимому, к монотропному переходу из гексагональной формы в моноклинную.

LuPO₄

Рис. 15. Кривые ДСК/ТГ/ТГ(H₂O) образцов La_{1-x}Lu_xPO₄·nH₂O ($1 - ДСК, 2 - T\Gamma, 3 - T\Gamma(H_2O)$ (масс-спектрометрия).

Экзотермические эффекты у образцов с концентраций Lu^{3+} 0.6 $\leq x \leq$ 0.75 при температурах около 700 и 780°С, не сопровождающиеся какимилибо заметными изменениями массы образцов отвечают, по-видимому, интенсивному росту исходных наноразмерных зерен. В случае LuPO₄ эти два эффекта сливаются в один уширенный, начинающийся при 570°С.

Зависимость среднего размера зерен образцов этой системы от температуры термообработки представлена на рис. 16.

Вид этих кривых показывает наличие двух групп образцов с различающимся характером роста зерен и, по-видимому, отражающим наличие разных типов твердых растворов.

Рис. 16. Зависимость среднего размера зерна (D) образцов La_{1-} _x $Lu_xPO_4($ nH₂O) от температуры обжига (1 ч).

Обобщая результаты РФА, ДСК и вид температурных зависимостей среднего размера зерна, можно констатировать наличие в системе LaPO₄–LuPO₄(–H₂O) двух серий ограниченных твердых растворов (гексагональных-моноклинных и тетрагональных). До температуры 500– 600°C в пределах концентрации $0 \le x \le 0.5$ – гексагональные на основе соединения LaPO₄·nH₂O; выше этой температуры вплоть до 1100°C – моноклинные на основе LaPO₄. Растворимость LaPO₄ в тетрагональном LuPO₄ во всем интервале температур не более 10 мол. %.

<u>Пятая глава</u> посвящена изучению керамики на основе нанопорошков ортофосфатов РЗЭ.

Из наноразмерных порошков $Ln'_{1-x}Ln''_{x}PO_{4}(\cdot nH_{2}O)$ в системах $YPO_{4}-LuPO_{4}-H_{2}O$, $LaPO_{4}-DyPO_{4}-H_{2}O$ и $LaPO_{4}-YPO_{4}-H_{2}O$ при 1000°С получена плотная керамика, определены ее микротвердость и пористость, а также изучено термическое поведение образцов методом дилатометрии.

Микротвердость керамики из нанопорошков ортофосфатов иттриялютеция представлена в табл. 1.

Таблица 1. Микротвердость керамических образцов в системе YPO₄-LuPO₄ (1000°C, 24 ч)

Состав образца	Микротвердость, ГПа, ± 0.1		
YPO ₄	4.2		
Y _{0.75} Lu _{0.25} PO ₄	6.2		
Y _{0.5} Lu _{0.5} PO ₄	5.3		
$Y_{0.25}Lu_{0.75}PO_4$	5.5		
LuPO ₄	5.7		

На рис. 17, *а–в* представлена микроструктура такой керамики и на рис. 17, *г* – топология поверхности излома таблетки. Оба рисунка демонстрируют отсутствие видимых пор в образцах и тот факт, что средний размер зерен не превышает 1 мкм. Кроме того, – заметное влияние на микроструктуру керамики добавки второго компонента, образующего твердый раствор замещения, облегчающий формирование зерен с полиэдрическими гранями при сравнительно низкой температуре спекания (1000°C, 24 ч), но сохраняющей высокую дисперсность и тем самым обеспечивающий низкую пористость.

Рис. 17. Электронно-микроскопические снимки, полученные с внутреннего излома раздробленной таблетки (1000°С, 24 ч) с помощью целлулоидноугольной реплики: (*a*) YPO₄, (*б*) Y_{0.75}Lu_{0.25}PO₄, (*в*) LuPO₄ (черные пятна – остатки целлулоидно-угольной реплики); *г* – топология поверхности образца Y_{0.25}Lu_{0.75}PO₄ – атомно-силовая микроскопия.

Кривые дилатометрии образцов представлены на рис. 18. Видно, что при общей тенденции к усадке они имеют заметный перегиб в интервале температур 500–600°С, который согласуется с величиной первой характеристической температуры (500–600°С) на рис. 7, и, по-видимому, с наблюдаемой на кривых ДСК потерей массы образцами за счет удаления воды (рис. 6) и начинающимся вслед за этим интенсивным ростом зерен. Далее процессы спекания приводят к уплотнению керамики. Ход кривых, как и в случае температурных зависимостей размера зерен образцов в этой системе (рис. 7) свидетельствует о незавершенности процесса спекания тетрагональных образцов даже при 1600°С.

Рис. 18. Кривые дилатометрии исходных образцов Y_{1-} $_xLu_xPO_4(\cdot nH_2O)$: YPO₄ (1), Y_{0.75}Lu_{0.25}PO₄ (2), Y_{0.5}Lu_{0.5}PO₄ (3), Y_{0.25}Lu_{0.75}PO₄ (4), LuPO₄ (5).

системе $LaPO_4$ –DyPO₄(–H₂O) В получена керамика, микротвердость которой меняется в зависимости от состава и низкой открытой пористостью (табл. 2). В этой серии образцов отмечено значительное снижение микротвердости И увеличение ростом пористости С концентрации диспрозия, связанное, по-видимому, с полиморфизма наличием наноразмерного DyPO₄ В интервале 1000–1100°С (рис. 8, г).

Таблица 2. Характеристика керамических образцов ортофосфатов в системе LaPO₄–DyPO₄ (1000°C, 24 ч)

Образец	Открытая пористость,	Микротвердость, ГПа,	
	‰, ±0.01	± 0.1	
LaPO ₄	0.13	5.1	
La _{0.75} Dy _{0.25} PO ₄	0.13	5.8	
La _{0.7} Dy _{0.3} PO ₄	0.13	6.1	
$La_{0.6}Dy_{0.4}PO_4$	0.14	4.2	
La _{0.5} Dy _{0.5} PO ₄	0.15	4.4	
La _{0.4} Dy _{0.6} PO ₄	0.18	3.9	
$La_{0.3}Dy_{0.7}PO_4$	0.19	4.6	
La _{0.25} Dy _{0.75} PO ₄	0.22	2.8	
DyPO ₄	0.12	2.5	

Из наноразмерных порошков ортофосфатов лантана-иттрия получена керамика с микротвердостью и пористостью, представленными в табл. 3.

Таблица 3.Открытая пористость и микротвердость керамических образцов в системе LaPO₄–YPO₄ при 1000 °C.

	Открытая	Микротвердость, ГПа (±0.1)					
Образец	пористость,	Время отжига, ч				Время отжига, ч	
	%*, ±0.01	1	6	12	24		
LaPO ₄	0.13				5.1		
$La_{0.9}Y_{0.1}PO_4$	0.13	1.5	2.1	2.8	5.3		
La _{0.75} Y _{0.25} PO ₄	0.13				5.8		
La _{0.7} Y _{0.3} PO ₄	0.14				5.4		
La _{0.6} Y _{0.4} PO ₄	0.14				6.0		
La _{0.5} Y _{0.5} PO ₄	0.13	2.0	3.0	3.8	5.9		
La _{0.4} Y _{0.6} PO ₄	0.17				3.8		
La _{0.3} Y _{0.7} PO ₄	0.18				3.9		
La _{0.25} Y _{0.75} PO ₄	0.20				2.8		
YPO ₄	0.12				3.1		

Примечание. *- определена для времени обжига 24 ч

Из данных таблицы видно, что микротвердость керамики заметно возрастает с увеличением времени изотермической термообработки.

Дилатометрия исходных наноразмерных порошков $La_{1-x}Y_{x}PO_{4} \cdot nH_{2}O$ показала в целом тенденцию к усадке материала до 1650°С (рис. 19). Отмечено, что участки на дилатометрических кривых серии образцов в целом соответствуют данным ДСК и температурной зависимости размера зерен (рис. 12, 13).

На рис. 20 представлены кривые дилатометрии моноклинных образцов $La_{0.9}Y_{0.1}PO_4$ и $La_{0.5}Y_{0.5}PO_4$, предварительно отожженных при 1000°C 24 ч. Они показали, что от 1100 до 1280°С происходит дальнейшее спекание материала, а в интервале температур 1280-1580°С у образца La_{0.9}Y_{0.1}PO₄ наблюдается заметное увеличение линейных размеров (рис. 20. 1. нагревание), связанное, по-видимому, с ростом зерен керамики, компенсирующее процесс усадки образца. При охлаждении линейные размеры данного образца практически не меняются, что позволяет говорить о безусадочности керамики данного состава (рис. 20, *1*, охлаждение).

Рис. 19. Кривые дилатометрии исходных образцов состава La_{1-} _xY_xPO₄·nH₂O: LaPO₄ (1), La_{0.75}Y_{0.25}PO₄ (2), La_{0.7}Y_{0.3}PO₄ (3), La_{0.6}Y_{0.4}PO₄ (4), La_{0.5}Y_{0.5}PO₄ (5), La_{0.4}Y_{0.6}PO₄, (6), La_{0.3}Y_{0.7}PO₄ (7), La_{0.25}Y_{0.75}PO₄ (8), YPO₄ (9).

У образца $La_{05}Y_{05}PO_4$ усадка наблюдается в интервале 1150-1580°С, а выше этой температуры происходит замедление этого процесса, что, ПОвидимому, также связано ростом зерен 2. керамики (рис. 20, нагревание). Линейный коэффициент теплового расширения (ЛКТР) керамического образца La_{0.9}Y_{0.1}PO₄ для температуры 1000°С составил 13.0×10⁻⁶К⁻¹, а образца La_{0.5}Y_{0.5}PO₄ - 7.9×10^{-6} K⁻¹. Как следует из литературных данных, для ортофосфата La (10.0×10⁻⁶/°С) и ортофосфата У (6.2×10⁻ ⁶/°С), – эти величины характерны для данного типа керамики.

На рис. 21 показана топография поверхности излома таблетки керамического образца La_{0.9}Y_{0.1}PO₄, который свидетельствует об очень низкой его пористости и полиэдрической форме

зерен, сформированных в процессе спекания, средний размер которых менее 1 мкм.

Рис. 21. Снимки, полученные на атомно-силовом микроскопе с излома таблетки керамического образца $La_{0.9}Y_{0.1}PO_4$ после спекания при 1000°С (24 ч): *a* – 3D изображение, *б* – 2D изображение.

В <u>шестой главе</u> проведено обсуждение и обобщение полученных в работе результатов.

Во-первых, синтезирован ряд ортофосфатов LnPO₄·nH₂O (La, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Lu и Y) со средним размером частиц, не превышающим 10–20 нм. Эти данные подтверждены как расчетами по формуле Шеррера, так и непосредственными измерениями на электронном микроскопе.

Подчеркнуто, что влияние дисперсности образцов ортофосфатов проявилось в нивелировании температуры перехода из гексагональной формы в моноклинную, который составил 500–600°С для всех исследованных наноразмерных ортофосфатов (La–Dy), в то время как для объемных образцов, по литературным данным, этот интервал в зависимости

от катиона соответствует величинам от 400 (для лантана) до 900°С для диспрозия.

Во-вторых, влияние дисперсности проявилось и в отношении перехода моноклинных ортофосфатов Тb и Dy в тетрагональную форму, наблюдаемого, по литературным данным для объемных образцов, уже при температурах 850–900°C, а для наноразмерных, по нашим данным, – выше 1000°C (рис. 3, *в* и 8, *в*, *г*). Для ортофосфата тербия эти данные хорошо согласуются с литературными.

Проведенные исследования в бинарных системах показали, что образование непрерывных серий твердых растворов наблюдается между компонентами, принадлежащими одному структурному типу – YPO₄– LuPO₄–H₂O и LaPO₄–DyPO₄–H₂O. Однако в последней системе способность DyPO₄ кристаллизоваться в тетрагональной сингонии при повышенных температурах приводит к тому, что при 1100°C в системе наблюдается разрыв смешиваемости – образование тетрагональных твердых растворов на основе DyPO₄ в узкой области концентраций наряду с широкой областью кристаллизации моноклинных твердых растворов (рис. 8).

Системы, в которых компоненты принадлежат разным структурным подгруппам, характеризуются ограниченной взаимной растворимостью уже при низких температурах (LaPO₄–YPO₄–H₂O и LaPO₄–LuPO₄–H₂O).

С одной стороны, твердые растворы $\text{Ln'}_{1-x}\text{Ln''}_x\text{PO}_4(\cdot n\text{H}_2\text{O})$ образуются на основе гексагонального или моноклинного ортофосфата лантана, с другой, – на основе тетрагональных YPO₄ или LuPO₄. Твердые растворы гексагональной сингонии в обеих системах наблюдаются в пределах концентрации $0 \le x \le 0.5$, в то время как моноклинные при 1000°C существуют примерно до x = 0.7 в системе LaPO₄–YPO₄ и до x = 0.5 в системе LaPO₄–LuPO₄ (рис. 11, 14).

По литературным данным, максимальная растворимость 42 мол. % УРО₄ в моноклинном LaPO₄ наблюдается при 1600°С. Расчет одного из

параметров (*a*) моноклинной элементарной ячейки серии твердых растворов $La_{1-x}Y_xPO_4$, представленный на рис. 22, показывает его закономерное изменение в пределах $0 \le x \le 0.7$, что подтверждает полученные нами данные.

Рис. 22. Концентрационная зависимость параметра *а* элементарной ячейки серии моноклинных твердых растворов La_{1-x}Y_xPO₄.

Из приведенных результатов сделан вывод, что высокодисперсные ортофосфаты гексагональной С И моноклинной структурой обладают значительно большей изоморфной сравнению емкостью по с крупнокристаллическими образцами.

Высказано предположение, что увеличение изоморфной емкости высокодисперсных веществ можно объяснить процессами, происходящими при золь-гель синтезе. Из литературных данных известно, что

золь-гель процесс подразумевает получение золя и последующий перевод его в гель, причем на первой стадии процесса формируется химический состав продукта, который получают в виде высокодисперсного коллоидного раствора – золя. Размер частиц дисперсной фазы в стабильном золе составляет 10⁻⁹-10⁻⁶ м. Отмечен, что увеличение концентрации дисперсной фазы приводит к появлению коагуляционных контактов между частицами и началу структурирования – гелеобразования (вторая стадия золь-гель процесса). В нашем случае – за счет введения водного раствора аммиака, приводящего ортофосфатов. К коагуляции коллоидных частиц Коагуляционные структуры характеризуются низкой прочностью, определяемой ван-дер-ваальсовыми силами, при этом взаимодействие частиц

осуществляется через равновесную по толщине прослойку дисперсионной среды (маточного раствора).

В целом золь-гель метод, как отмечено в литературе, дает возможность выделения из маточного раствора макромолекул в виде трехмерных сеток, содержащих катионы, смешанные на атомном уровне, обеспечивая тем самым однородное распределение элементов в продукте осаждения (в данном случае – твердом растворе).

Проведено также обсуждение термического поведения наноразмерных ортофосфатов в бинарных системах по совокупности данных ДТА(ДСК) и температурных зависимостей среднего размера зерна синтезированных образцов (рис. 7, 10, 13, 16). Отмечается, что во всех системах наиболее интенсивный рост зерен происходит в интервале температур 500–600°С. Он связан, по-видимому, с завершением процесса удаления воды из образцов и осуществляется за счет поглощения микродефектов и пор. Для этой же температурной области характерна перестройка структуры из гексагональной в моноклинную и изменение формы наночастиц. Исходные иголки или пластинки (рис. 2) округляются, затем формируются углы и грани округлых зерен, постепенно округлая форма сменяется полиэдрической, как это показано на рис. 21. Далее рост зерен, как мы предполагаем, происходит за счет поглощения мелких зерен более крупными (рекристаллизационное поглощение) и коалесценции пор. Затем при температуре выше 1000°С для моноклинных образцов наблюдается некоторое замедление роста зерен (рис. 10, 13, 16), связанное, по-видимому, с тем, что к этому моменту произошла полная рекристаллизация, частицы выросли до средних размеров (50–70) ± 10 нм, и диффузия на их поверхности стала затруднительной. Замедления роста зерен тетрагональных образцов при этой температуре еще не наблюдается (рис. 10), что хорошо согласуется с литературными данными для YPO₄. Предполагается, что это связано с меньшим размером исходных наночастиц.

Керамика, полученная из наноразмерных порошков Ln'_{1-} _{*x*} $Ln''_{x}PO_{4}(\cdot nH_{2}O)$ при 1000°C (24 ч), демонстрирует микротвердостью не более 5–6 ГПа, что соответствует твердости природных минералов апатиту и ортоклазу (5–6 единиц по шкале Mooca) и немного уступают кварцу (7 единиц по шкале Mooca).

Установлено, что микротвердость керамики заметно возрастает с увеличением времени изотермической термообработки (табл. 3), что определяет перспективность ее при работе при высоких температурах и длительных изотермических выдержках. Высокие температуры плавления образцов $La_{1-x}Y_xPO_4$ (1875–2050°С) свидетельствуют о высокой термической стойкости керамики.

Эти характеристики определяют перспективность ее использования для иммобилизации высокоактивных отходов актинид-редкоземельной фракции.

Основные результаты и выводы:

1. Показано, что синтезированные индивидуальные ортофосфаты РЗЭ (LnPO₄·nH₂O) и их бинарные композиции в системах YPO₄-LuPO₄-H₂O, LaPO₄-DyPO₄-H₂O, LaPO₄-H₂O и LaPO₄-YPO₄-H₂O являются наноразмерными, со средним размером зерен 10–20 нм.

2. Показано, что моноклинная структура наноразмерных ортофосфатов Тb и Dy остается стабильной до 1000°С, в отличие от крупнокристаллических аналогов. Их переход в тетрагональную форму наблюдается только при 1100°С. Для DyPO₄ это установлено впервые.

3. Установлено, что наноразмерность ортофосфатов РЗЭ (La–Dy) оказывает влияние на переход из гексагональной формы в моноклинную, сопровождающийся потерей воды, который у них наблюдается в температурном интервале 500–600°С не зависимо от размера катиона, в отличие от крупнокристаллических аналогов.

4. Впервые изучены бинарные системы YPO_4 -LuPO₄-H₂O, LaPO₄-DyPO₄-H₂O, LaPO₄-H₂O и LaPO₄-YPO₄-H₂O во всем диапазоне концентраций.

5. В системах YPO₄–LuPO₄–H₂O, LaPO₄–DyPO₄–H₂O, где компоненты принадлежат одному структурному типу, до исследованной температуры (1000°C) образуются серии непрерывных твердых растворов замещения. Однако в системе LaPO₄–DyPO₄ при 1100°C наблюдается разрыв смешиваемости с образованием тетрагональных твердых растворов на основе DyPO₄ в узкой области концентраций.

 Установлено, что изоморфная емкость наноразмерных ортофосфатов
 РЗЭ в системах с ограниченной взаимной растворимостью (LaPO₄–YPO₄– H₂O и LaPO₄–LuPO₄–H₂O) значительно превышает соответствующие характеристики крупнокристаллических образцов.

7. Получена плотная керамика из наноразмерных порошков бинарных композиций $Ln'_{1-x}Ln''_xPO_4(\cdot nH_2O)$ при 1000°C (24 ч), обладающая микротвердостью 5–6 ГПа, значения которой возрастают с увеличением времени термообработки, что определяет перспективность ее при работе при высоких температурах и длительных изотермических выдержках.

Список публикаций по теме диссертации

Статьи в научных журналах:

 Осипов А.В., Мезенцева Л.П., Дроздова И.А., Кучаева С.К., Уголков
 В.Л, Гусаров В.В. Кристаллизация и термические превращения в нанокристаллах системы YPO₄−LuPO₄−H₂O. // Физика и химия стекла. 2007.
 Т. 33. № 2. С. 235–240.

2. Осипов А.В., Мезенцева Л.П., Дроздова И.А., Кучаева С.К., Уголков В.Л, Гусаров В.В. Получение и термические превращения нанокристаллов в системе LaPO₄–LuPO₄–H₂O. // Физика и химия стекла. 2009. Т. 35. № 4. С. 568–574.

3. Gavrichev K.S., Ryumin M.A., Tyurin A.V., Khoroshilov A.V., Mezentseva L.P., Osipov A.V., Ugolkov V.L., Gusarov V.V. Thermal behavior of $LaPO_4 \cdot nH_2O$ and $NdPO_4 \cdot nH_2O$ nanopowders. // Journal of Thermal Analysis and Calorimetry. 2010. V. 102. N 2. P. 809–811.

4. Масленникова Т.П., Осипов А.В., Мезенцева Л.П., Дроздова И.А., Кучаева С.К., Уголков В.Л., Гусаров В.В. Синтез, взаимная растворимость и термическое поведение нанокристаллов в системе LaPO₄–YPO₄–H₂O. // Физика и химия стекла. 2010. Т. 36. № 3. С. 435–440.

5. Мезенцева Л.П., Кручинина И.Ю., Осипов А.В., Кучаева С.К., Уголков В.Л., Пугачев К.Э. Керамика из наноразмерных порошков ортофосфатов системы LaPO₄−YPO₄−H₂O. // Физика и химия стекла. 2012. Т. 38. № 5. С. 676–687.

Статьи в сборниках:

1. Осипов А.В., Румянцева А.Г., Масленникова Т.П. Получение керамики на основе нанокристаллов индивидуальных и смешанных ортофосфатов лантана, гольмия, лютеция и иттрия. // Проблемы создания и эксплуатации новых типов электроэнергетического оборудования. Вып. 7. – ОЭЭП РАН – ИХС РАН. СПб., 2006. С. 166–170.

Патенты:

1. Заявка на «Способ получения керамики на основе ортофосфатов редкоземельных элементов», МКИ: С04В 35/447, С04В 35/50, С04В 35/624 // Мезенцева Л.П., Осипов А.В., Уголков В.Л., Пугачев К.Э., Кручинина И.Ю.; Институт химии силикатов им. И.В. Гребенщикова РАН, № 2012123785; заявл. 07.06.12.

Тезисы в сборниках материалов научных конференций:

1. Осипов А.В., Мезенцева Л.П., Гусаров В.В. Получение нанокристаллов ортофосфатов РЗЭ и их твердых растворов. // В кн.: Программа и тезисы докладов научной конф. по неорг. химии и радиохимии, посвященной 100-

летию со дня рождения академика В.И. Спицына (Москва, 17–18 апр. 2002, хим. ф-т МГУ). – М., 2002. С. 1–15.

 Осипов А.В., Дроздова И.А., Мезенцева Л.П., Гусаров В.В. Получение оксидов, фосфатов РЗЭ и их твердых растворов в виде нанокристаллов. // В кн.: Высокотемпературная химия силикатов и оксидов. Тез. докл. VIII Всеросс. совещ., 19–21 ноября 2002, СПб., СПб.: Изд-во «Янус», 2002. С. 197.
 Осипов А.В. Фосфаты РЗЭ и их твердые растворы в виде нанокристаллов. // IV Молодежная научная конференция. ИХС РАН, Санкт-Петербург, 2002, Тез. докл. СПб.: Изд-во «Янус», С. 69–70.

4. Осипов А. В. Твердые растворы фосфатов РЗЭ полученные золь-гель методом. // V Молодежная научная конференция. ИХС РАН, Санкт-Петербург, 2003, Тез. докл. СПб.: Изд-во «НИИХ СПб ГУ», С. 73-74.

5. Osipov A.V., Drozdova I.A., Mezentseva L.P., Gusarov V.V. Growth kinetics of nanosized rare earth orthophosphates and their solid solutions, and ceramics based on them. // In: Nanoparticles, Nanostructures & Nanocomposites, Topical meeting of the European Ceramics Society: 2004. Book of Abstracts. – St.-Petersburg: VVM. co.Ltd., 2004. P. 62-63.

6. Osipov A.V., Drozdova I.A., Mezentseva L.P., Gusarov V.V. Growth kinetics of nanosized rare earth orthophosphates Y, Lu and their solid solutions. // Inter.confer. «Functional Materials» ICFM-2005, Abstracts, Ucraine, Crimea, Partenit, October 3–8, 2005, P. 295

7. Осипов А. В. Получение, изучение термического поведения и роста нанокристаллов в системе YPO₄–LuPO₄. // VII Молодежная научная конференция. ИХС РАН, Санкт-Петербург, 2005, Тез. докл. С. 32–33.

8. Osipov A.V., Maslennikova T.P., Drozdova I.A., Kuchaeva S.K., Ugolkov V.L., Mezentseva L.P., Gusarov V.V. Preparation of nanoceramics based on rare earth orthophosphates and their solid solutions. // In: Book of Abstracts "Structural Chemistry of Partially Ordered Systems, Nanoparticles and Nanocomposites",

Topical Meeting of the European Ceramic Society, June 27–29, 2006, Saint-Petersburg, Russia. P. 67.

 Осипов А. В., Мезенцева Л. П., Дроздова И. А., Гусаров В. В. Нанокристаллы ортофосфатов Ү, Lu и их твердых растворов, получение и свойства. // 9-ый Международный симпозиум «Порядок, беспорядок и свойства оксидов». – ОДРО-9. – Ростов-на-Дону, п. Лоо, 19–23 сентября 2006 г.: Труды симпозиума. Ч. II. – Ростов-на-Дону: Изд-во РГПУ, 2006. – С. 64– 67.

10. Осипов А. В., Получение керамики на основе нанокристаллов ортофосфатов La, Lu, Y и их твердых растворов // VIII Молодежная научная конференция ИХС РАН, Санкт-Петербург, 2006. Тез. докл. С. 66–67.

11. Осипов А.В., Мезенцева Л.П., Дроздова И.А., Уголков В.Л., Гусаров В.В. Получение нанокристаллов индивидуальных и смешанных ортофосфатов иттрия и лютеция, а так же керамики на их основе // Порядок, беспорядок и свойства оксидов. 10-й Международный симпозиум. 12–17 сентября 2007 г. Ростов-на-Дону – пос. Лоо, Ростов-на-Дону: Изд-во РГПУ, Тез. докл. С. 226–228.

12. Осипов А.В. Разработка основ технологии керамики из наноразмерных порошков ортофосфатов редкоземельных элементов (LnPO₄·*n*H₂O). // В кн.: Международн. форум по нанотехнологиям. Сб. тезисов докладов участников Международного конкурса научных работ молодых ученых в области нанотехнологий. Москва, 3–5 декабря 2008, М., 2008. Ч. С. 356–358.

13. Осипов А.В. Разработка керамических и люминесцентных материалов на основе наноразмерных порошков ортофосфатов редкоземельных элементов. // Х Молодежная научная конференция, ИХС РАН, Санкт-Петербург, 2009. СПб.: Изд-во «Лема», С. 62–65.

14. Осипов А.В., Пугачев К.Э. Керамика из наноразмерных порошков ортофосфатов La_{1-x}Y_xPO₄·nH₂O для деталей микротурбогенераторной установки. // Тез. докл. на Российской конференции – научной школе

молодых ученых «Новые материалы для малой энергетики и экологии. Проблемы и решения», посвященной 80-летию академика Я.Б. Данилевича, 22–23 ноября 2011, Санкт-Петербург, Институт химии силикатов им. И.В. Гребенщикова РАН, СПБ.: Лема, С. 42.

15. Bakhmetyev V.V., Mezentseva L.P., Osipov A.V., Orlova A.I., Malanina N.V., Sovestnov A.E., Trunov V.A., Sokolov A.E., Sychov M.M. Luminescent nanoparticles for photodynamic cancer therapy. // In: Abstract-Book of the International Nanotechnology Forum NanoBRIDGE. St. Petersburg, Russia (June 3–4, 2012). P. 42.

16. Осипов А.В., Мезенцева Л.П., Уголков В.Л., Пугачев К.Э., Дроздова И.А. Получение и свойства керамики на основе нанопорошков ортофосфатов La и Y (Институт химии силикатов им. И.В.Гребенщикова, РАН, г. Санкт-Петербург, РФ). // Вторая конференция стран СНГ «Золь-гель синтез и исследование неорганических соединений, гибридных функциональных материалов и дисперсных систем». 18–20 сентября 2012, Севастополь – Украина. Тез. докл. С. 166.