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The synthesis of nanotubular formations and the
study of their structure and properties represent a new
line of inquiry in materials science [1]. The develop-
ment of this branch is stimulated by the unusual prop-
erties of nanotubes and composite materials produced
on their basis [1].

Promising original materials for obtaining nano-
tubes are compounds with a layered structure [2], for
example, hydrosilicates [3]. Irrespective of the struc-
ture of the original components, under hydrothermal
conditions, nanotubes start to form only after interme-
diate compounds with a layered structure have been
formed; it is precisely from these compounds that nano-
tubes are formed in the next stage of the synthesis [3, 4].
The investigation of the conditions and dynamics of
layer twisting for compounds with a layered structure
and their subsequent recrystallization with the forma-
tion of nanotubes with a certain morphology is of great
importance for understanding the mechanism of nano-
tube formation.

The possibility of nanotube formation by spontane-
ous twisting of layers under the action of internal
stresses was mentioned as early as 1930 [5]. There are
some works devoted to the mechanics of nanotube for-
mation by means of the twisting of stressed nanolayers
and the effect of the size factor on the mechanical prop-
erties of materials (see, for example, [6–8]). At the
same time, the dynamics of the process of nanotube
twisting as they are formed in fluid media has not yet
been analyzed. A salient feature of nanotube formation
in hydrothermal or other fluid media is that the viscous
medium affects the twisting process. A double layer is
rolled due to internal stresses caused by the incomplete
structural correspondence of the constituent layers.

Examples of layered chemical compounds with such a
structure are compounds with a serpentine structure
[2–5]. Under certain conditions (with increase in the
interlayer space thickness 
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due to the intercalation of
water or other components of the surrounding medium
between the layers), a double layer of thickness 
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 can
be twisted into a circular cylinder, or a nanotube with an
initial radius 
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 (Fig. 1) of the order of a few nanome-
ters. The angular velocity 
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 of the nanotube is deter-
mined by the balance of two moments, namely, the
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. The Reynolds number
of the viscous flow around the twisted nanotube can be

estimated as Re = . Here, 

 

E

 

 is Young’s modu-

lus of the nanotube, 

 

µ

 

 and 
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 are the dynamic viscosity
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Fig. 1. 

 

Streamlines around a nanotube twisted from a dou-
ble layer on the boundary of a viscous fluid.
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and density of the fluid, and 

 

α

 

 is a dimensionless
parameter. For our estimates, we let 

 

α

 

 = 1, 

 

R

 

 ~ 5

 

 

 

×

 

10

 

−

 

9

 

 

 

m, 

 

δ

 

' ~ 2

 

 

 

×
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–10

 

 

 

m, 

 

E

 

 ~ 10

 

11

 

 Pa, 

 

µ

 

 ~ 10

 

–2

 

 kg/(m s),
and 

 

ρ

 

 ~

 

 300 kg/m

 

3

 

. The above values are typical of nan-
otube formation from layered compounds with a ser-
pentine structure under hydrothermal conditions (near
the critical point of water). In this case, we obtain Re 

 

~
10

 

–4

 

. Although the values of the mechanical parame-
ters, density, and viscosity can change in going over to
nanodimensional objects [7, 9], these variations have
little effect on the Reynolds number, which turns out to
be low; this makes it possible to use the quasi-station-
ary Stokes approximation [10] for describing the flow.
The solution to the biharmonic equation for the stream
function 

 

Ψ

 

 with homogeneous conditions for 

 

Ψ

 

 and

 imposed on the flat boundary of the layer and the

condition 
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 = –
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r

 

 on the tube surface have the form

 

(1)

 

The streamline pattern presented in Fig. 1 shows a vor-
tex generated by the rotating nanotube. Using Eq. (1),

we obtain 
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 = 2
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, where 

 

α ≈ 

 

.

Let us write the total potential energy of the nano-
tube and that part of the double layer that has not yet
been twisted in the form

 

(2)

 

where 

 

L

 

 and 

 

L

 

0

 

 are the length of the nontwisted part of
the nanolayer and its initial value, respectively; 

 

ζ

 

 is the
coordinate measured along the nanotube coils; and

 

R

 

0

 

 is the equilibrium radius of the nanotube coil.
Expression (2) makes it possible to calculate the elastic
force moment 

 

M

 

E

 

 applied to the nanotube and the nor-
mal stress 

 

σ

 

 on its inner surface. Then the equality of
the moments 
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E

 

 = 
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 + 
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, where 

 

M

 

A

 

 is the moment
of the forces of nanotube adhesion to the nanolayer,
yields the following equation of the dynamics of the
outside radius 
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2

 

:
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As the nanotube twists, its inner radius R1 decreases,
which leads to the displacement of the viscous fluid out
of the hollow space of the tube. Equating the mechani-
cal stress on the inside surface of the nanotube and the
mean stress in the viscous fluid within the nanotube, we
obtain the following equation for the dynamics of the
inner radius:

(4)

Figure 2 presents the calculated dynamics of the
outer and inner radii of a nanotube with the initial con-
ditions R1(0) = R0 – 0.5δ and R2(0) = R0 + 0.5δ for dif-
ferent values of the adhesion force moment. It is
assumed that the length and thickness of the original
nanolayer are equal and have the order of 2 µm. As a
limiting variant, we considered the nanotube twisting
without relative slipping of its coils (in this case,
Eqs. (3) and (4) can be considerably simplified). The
characteristic time of twisting is proportional to the
fluid viscosity.
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Fig. 2. Time dependence of the inner (R1) and outer
(R2) radii of nanotube 1 without relative slipping of the coils
in the case where the dimensionless adhesion force moment
mA = 0 and with regard for coil slipping in the case of
(2) mA = 0 and (3) mA = 0.5.
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Thus, the viscosity has a considerable effect on the
layer twisting time. Within the considered range of vis-
cosity (µ ~ 10–2–10–1 kg/(m s)), the characteristic time
of twisting for a layer with a serpentine structure having
a thickness of several micrometers amounts to several
tenths of a second to several milliseconds (Fig. 2). The
adhesion force moment can also have an appreciable
effect on the nanotube twisting rate. Comparing the cal-
culated time of twisting to the actual duration of the
process of nanotube formation from layered com-
pounds with the serpentine structure [2–4], as well as
the calculated and measured nanotube lengths, we can
conclude that the most prolonged stage of nanotube for-
mation (at least, under hydrothermal conditions) is not
layer twisting, but material recrystallization by means
of mass transfer of the components through the hydro-
thermal medium. At the same time, in certain cases (in
particular, at nanotube formation from exfoliated lay-
ered compounds in high-viscosity media), the twisting
process can limit the nanotube formation rate. This sit-
uation can occur, for example, when nanocomposites
are obtained by the method described in [11] in the
cases where the nanolayers being formed are internally
stressed double layers.
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