© Шарова И. С., Иванова Т. Ю., Маньшина А. А. ИССЛЕДОВАНИЕ СПЕКТРОСКОПИЧЕСКИХ ПАРАМЕТРОВ ХАЛЬ-КОГЕНИДНЫХ СТЕКОЛ СИСТЕМЫ Ga–Ge–S:Er³⁺

Санкт – Петербургский Государственный Университет, НИИ Российский центр лазерной физики, Россия, 198904, Санкт-Петербург, Петродворец, Ульяновская ул., 5

Определены спектроскопические характеристики халькогенидных стекол системы Ga–Ge–S:Er³⁺. По данным спектроскопии поглощения рассчитаны силы осцилляторов, параметры интенсивности Джадда–Офельта (Ω_t), вероятности спонтанных излучательных переходов, радиационные времена жизни уровней для двух серий халькогенидных стекол системы Ga–Ge–S, активированных ионами Er³⁺: при фиксированном составе матрицы стекла (0.15Ga₂S₃·0.85GeS₂) изменялась концентрация Er₂S₃ от 0.49 до 4.64 мол. %; при фиксированной концентрации Er₂S₃ 1.94 мол. % изменялось содержание Ga₂S₃ от 10 до 30 мол. % в стекле.

Проанализирована зависимость указанных спектроскопических параметров от состава халькогенидных стекол. Установлено, что силы осцилляторов и вероятности спонтанных излучательных переходов Er³⁺ в халькогенидной основе выше, чем в фосфатной, германатной и теллуритной матрицах.

Введение. Особый интерес для квантовой оптоэлектроники представляют оптические материалы, активированные редкоземельными ионами (РЗИ). Высокоэффективные лазеры, усилители, преобразователи ИК излучения могут быть успешно реализованы на их основе. Интерес к халькогенидным стеклам (ХГС) обусловлен отсутствием в их колебательном спектре высокоэнергетических фононов, что приводит к низкой вероятности многофононной безызлучательной релаксации редкоземельных ионов. Еще одним важным свойством ХГС является высокий показатель преломления (>2.1), благодаря чему ХГС характеризуются высокими сечениями поглощения и излучения редкоземельных ионов [1]. ХГС также обладают полупроводниковыми свойствами [2–5], сохраняют стеклообразующую способность при введении высоких концентраций редкоземельных ионов [6–8]. Помимо этого ХГС имеют широкую область прозрачности – от видимой до ИК области, причем изменением состава ХГС можно добиваться значительного смещения границ области прозрачности [8]. Все эти свойства, а также относительная легкость синтеза ХГС сделали их привлекательной основой для легирования редкоземельными элементами. Выбор редкоземельного иона-активатора при создании новых оптических сред определяется рабочей длиной волны. Так, например, для решения задач волоконной оптики создание устройств, работающих на длинах волн 0.8, 1.3 и 1.5 мкм, имеет принципиальное значение. Это связано с тем, что кварцевые оптические волокна имеют три основных рабочих диапазона: первый (около 0.8 мкм) соответствует длине волны GaAs лазерного диода, второй (1.3 мкм) – области минимальной дисперсии и, наконец, третий (1.5 мкм) – области минимальной дисперсии и, наконец, третий (1.5 мкм) – области минимальной дисперсии и, наконец, третий (1.5 мкм) – области минимальных оптических потерь. Эрбий является идеальным ионом для работы в областях 820 и 1550 нм, поскольку указанные полосы соответствуют электронным переходам иона эрбия из основного состояния ${}^4I_{15/2}$ в возбужденные ${}^4I_{9/2}$ и ${}^4I_{13/2}$.

На базе ХГС, легированных эрбием, могут быть разработаны эффективные визуализаторы ИК-излучения, волоконно-оптические усилители, активные устройства интегральной оптики и т.д. Хотя халькогенидные стекла считаются хорошо изученными (определены области стеклообразования большого количества стеклообразующих систем, исследованы их химические, физические и оптические свойства, отработаны методики синтеза), интерес исследователей к халькогенидным стеклам не уменьшается именно благодаря возможности варьирования в широких пределах их параметров при изменении состава ХГС [9–12].

Предметом исследования данной работы являлись две серии халькогенидных стекол системы Ga–Ge–S: Er^{3+} : при фиксированном составе матрицы стекла (0.15Ga₂S₃·0.85GeS₂) изменяется концентрация Er_2S_3 от 0.49 до 4.64 мол. %; при фиксированной концентрации Er_2S_3 (1.94 мол. %) изменяется содержание Ga₂S₃ от 10 до 30 мол. % в стекле.

Система Ga–Ge–S была выбрана объектом исследования, поскольку она обладает более коротковолновым краем фундаментального поглощения по сравнению с другими халькогенидными стеклообразными материалами [13] и сохраняет стеклообразующую способность при введении значительного количества халькогенидов редкоземельных элементов [14].

Цель работы – исследование зависимости спектроскопических параметров XГС этой системы от концентрации Er_2S_3 и от содержания Ga_2S_3 .

Экспериментальная часть. Халькогенидные стекла синтезировались в откачанных до давления 10^{-5} мм рт. ст. кварцевых ампулах, помещенных в качающиеся печи. Для синтеза использовались галлий и германий с концентрацией основного вещества 99.999 %, сера и эрбий – 99.95 %. Синтез проводился при постоянном перемешивании и температуре 1100 °C в течение 12 ч. Область стеклообразования исследуемой халькогенидной системы (Ga–Ge–S:Er³⁺) простирается от 0 (чистого GeS₂) до 42 мол. % Ga₂S₃.

Образцы ХГС представляли собой плоскопараллельные полированные пластинки толщиной 0.5 мм. Для решения поставленной задачи в работе использовался метод спектроскопии поглощения, все измерения проводились при комнатной температуре.

Экспериментальная установка включала в себя источник оптического излучения (вольфрамовая BAND – лампа типа СИРШ-100 со стандартной цветовой температурой 2840 К), монохроматор МДР-6, фотоприемник ФЭУ-119 (область спектральной чувствительности 400–800 нм) и ФЭУ-62 (область спектральной чувствительности 400–1200 нм), германиевый фотодиод (область спектральной чувствительности 1000–2000 нм).

Обсуждение и результаты. На рис. 1 представлен спектр поглощения одного из исследуемых стекол системы Ga–Ge–S:Er³⁺ в области от 500 до 2000 нм. Поглощение в области 500 нм связано с оптическим поглощением матрицы стекла (переходы валентная зона–зона проводимости). Полосы поглощения в областях 537, 553, 670, 810, 990 и 1550 нм связаны с поглощением ионами Er^{3+} и соответствуют переходам из основного состояния Er^{3+} (⁴ $I_{15/2}$) на уровни ² $H_{11/2}$, ⁴ $S_{3/2}$, ⁴ $F_{9/2}$, ⁴ $I_{1/2}$, ⁴ $I_{13/2}$ соответственно.

Силы осцилляторов f_j для вышеперечисленных переходов были рассчитаны по формуле (1) из [15, 16]:

$$f_j = \frac{m_0 c 9 n_{\pi}}{\mathrm{pe}^2 (n_{\pi}^2 + 2)^2 N_0} \int k(\pi) \mathrm{d}\pi \quad , \tag{1}$$

где N_0 – концентрация ионов Er^{3+} , $k(\lambda)$ – коэффициент поглощения на длине волны λ , *e* – заряд электрона, *c* – скорость света, n_{λ} – показатель преломления. Полученные результаты представлены в табл. 1 и 2. Погрешность вычислений не превышает 10 %.

По данным, представленным в табл. 1 и 2, построены графики зависимости сил осцилляторов от концентрации Er_2S_3 (рис. 2, 3) и от содержания Ga_2S_3 (рис. 4) в исследуемой системе стекол.

Из представленных на рис. 2 и 3 зависимостей видно, что увеличение концентрации Er_2S_3 от 0.49 до 4.64 мол. % приводит к значительному изменению сил осцилляторов только для гиперчувствительного¹ перехода ${}^4I_{15/2}-{}^2H_{11/2}$. Причем увеличение концентрации Er_2S_3 от 1.94 до 4.64 мол. % в системе Ga–Ge–S: Er^{3+} с матрицей фиксированного состава 0.15Ga₂S₃·0.85GeS₂ ведет к уменьшению (почти в два раза) сил осцилляторов перехода Er^{3+} ${}^4I_{15/2}-{}^2H_{11/2}$ (рис. 3).

¹ Гиперчувствительными называются переходы, для которых выполняется следующее правило отбора: $|\Delta J| \le 2, |\Delta L| \le 2, \Delta S = 0$, такие переходы чувствительны даже к слабым изменениям кристаллического поля.

Поскольку при увеличении концентрации Er_2S_3 значение сил осцилляторов постоянно для всех переходов, кроме гиперчувствительного, то можно сделать предположение о постоянстве радиационного времени жизни уровней РЗИ для первой серии стекол исследуемой системы.

Однако изменение содержания Ga₂S₃ в стекле (10–30 мол. %) влечет за собой значительное изменение сил осцилляторов для всех переходов иона Er^{3+} (здесь в качестве примера представлена зависимость для перехода ${}^{4}I_{15/2}$ – ${}^{4}I_{11/2}$ (рис. 4)). Увеличение содержания Ga₂S₃ от 15 до 30 мол. % в исследуемой системе, с фиксированной концентрацией Er_{2} S₃ (1.94 мол. %) приводит к уменьшению сил осцилляторов перехода Er^{3+} ${}^{4}I_{15/2}$ – ${}^{4}I_{11/2}$ (рис. 4).

Используя полученные значения сил осцилляторов (табл. 1, 2) методом наименьших квадратов были определены параметры интенсивности Джадда–Офельта (Ω_t) [15, 16] для исследуемых серий:

$$f_{j} = \frac{8pm_{0}\pi_{J}}{3\hbar(2J+1)} \sum_{t=2.4.6} \Omega_{t} \left\| \left\langle f^{N}[S,L]J \right\| U^{(t)} \right\| f^{N}[S',L']J' \right\rangle \right\|^{2},$$
(2)

где <|| $U^{(t)}$ ||> – дважды приведенные матричные элементы единичных тензорных операторов $U^{(t)}$ в приближении промежуточной связи (их числовые значения можно считать не зависимыми от типа основы; для ионов Er^{3+} их значения были рассчитаны в [17]); *J* – полный угловой момент начального состояния; m_0 – масса электрона. Полученные данные представлены в табл. 3, 4.

Анализ зависимости параметров интенсивности Джадда–Офельта от состава халькогенидных стекол позволяет исследовать структурные особенности этих стекол.

Так, из представленных на рис. 5–7 графиков зависимостей Ω_t от концентрации Er^{3+} видно, что при изменении концентрации $\mathrm{Er}_2\mathrm{S}_3$ (от 0.49 до 4.64 мол. %) меняется только параметр Ω_2 , а Ω_6 и Ω_4 практически не меняются. Считается [18–22], что параметр Ω_2 наиболее чувствителен к степени асимметрии кристаллического поля на РЗИ и к изменению энергетического зазора между $4f^{\mathbb{N}}$ - и $4f^{\mathbb{N}-1}5d^1$ состояниями РЗИ, а параметр Ω_6 наиболее чувствителен к изменению электронной плотности 4f- и 5d-оболочек,

Изменения энергетического зазора между $4f^{\mathbb{N}}$ - и $4f^{\mathbb{N}-1}5d^1$ -состояниями и электронной плотности 4f- и 5d-оболочек отражают изменение степени ковалентности связей РЗИ с другими элементами.

Так как параметр Ω_4 является результатом одновременного влияния указанных факторов, что иногда не позволяет однозначно определить причины изменения этого параметра, то анализ структурных изменений в исследуемой матрице проводился на основе параметров Ω_2 и Ω_6 .

На основе полученных данных можно сделать вывод о том, что с изменением концентрации Er_2S_3 в исследуемом стекле происходят изменения только в степени асимметрии кристаллического поля ионов окружения РЗИ. Причем из рис. 5 видно, что увеличение концентрации Er_2S_3 от 1.94 до 4.64 мол. % ведет к уменьшению Ω_2 , а значит, согласно [18–22], это приводит к уменьшению степени асимметрии кристаллического поля.

Из графиков зависимости Ω_t от содержания Ga₂S₃ (рис. 8–10) видно, что изменение содержания Ga₂S₃ от 10 до 30 мол. % приводит к изменению степени ковалентности связи ионов окружения РЗИ, поскольку меняются параметры Ω_2 и Ω_6 . Из рис. 10 следует, что при увеличении содержания Ga₂S₃ от 15 до 30 мол. % параметр интенсивности Ω_6 уменьшается, а следовательно, согласно [18–22], уменьшается степень ковалентности связи между ионами окружения и РЗИ.

Кроме того, обнаружена корреляция зависимостей положения края оптического поглощения и одного из параметров интенсивности Джадда–Офельта (Ω_6) от содержания Ga₂S₃. Анализ зависимостей, представленных на рис. 11, показал, что при увеличении содержания Ga₂S₃ от 10 до 15 мол. % край оптического поглощения сдвигается в ИК область, а параметр интенсивности Ω_6 увеличивается.

Известно, что положение края оптического поглощения однозначно связано с оптической шириной запрещенной зоны [23], а именно:

$$\lambda_c = hc/E_g \quad , \tag{3}$$

где λ_c – положение края оптического поглощения, а E_g – ширина запрещенной зоны.

Следовательно, при сдвиге края оптического поглощения в ИК область, согласно формуле (3), происходит уменьшение ширины запрещенной зоны и, как следствие, уменьшение энергии связи, необходимой для перехода электрона из валентной зоны в зону проводимости. А увеличение параметра Ω_6 , согласно [18–22], свидетельствует об увеличении степени ковалентности связи между ионами окружения и РЗИ, т. е. связь становится менее прочной (энергия связи уменьшается).

Таким образом, изменение содержания Ga_2S_3 в исследуемом стекле приводит к изменениям ширины запрещенной зоны и степени ковалентности связи (энергии связи), а именно: при увеличении содержания Ga_2S_3 от 10 до 15 мол. % в исследуемом стекле происходит уменьшение ширины запрещенной зоны и увеличение степени ковалентности связи (уменьшение энергии связи) (рис. 11); дальнейшее увеличение содержания Ga_2S_3 (от 15 до 30 мол. %) приводит к увеличению ширины запрещенной зоны и уменьшению степени ковалентности связи (увеличение энергии связи) (рис. 11).

Используя рассчитанные параметры интенсивности из [15, 16], были определены вероятности спонтанных излучательных переходов (*A_i*)

$$A_{j}[(S,L)J;(S',L')J'] = \frac{64p^{4}e^{2}n_{\pi}(n_{\pi}^{2}+2)^{2}}{12pe_{0}h(2J+1)9\pi^{3}} \cdot \sum_{t=2,4,6} \Omega_{t} \left| \left\langle (S,L)J \right\| U^{(t)} \right\| (S',L')J' \right\rangle \right| .$$
(4)

Полученные результаты представлены в табл. 5 и 6. Погрешность расчетов не превышает 5 %.

Кроме этого, согласно теории Джадда–Офельта [15, 16], было рассчитано радиационное время жизни уровней (т_{изл})

$$\tau_{i_{N3\pi}} = \left(\sum_{S',L',j'} A[(S,L)J;(S',L')J']\right)^{-1} .$$
(5)

Анализ зависимости радиационного времени жизни уровней ($\tau_{изл}$) от концентрации Er_2S_3 в исследуемом стекле показал, что увеличение концентрации Er_2S_3 не приводит к изменению $\tau_{изд}$ для уровней ${}^4S_{3/2}$, ${}^4F_{9/2}$, ${}^4I_{11/2}$ (рис. 12). Если теперь сравнить рис. 12 и 2, то можно увидеть, что предположение о постоянстве радиационного времени жизни уровней РЗИ в исследуемой матрице стекла, вытекающее из постоянства сил осцилляторов при изменении концентрации эрбия, подтверждается.

В итоге был проведен сравнительный анализ спектроскопических характеристик стекол исследуемой системы с данными для оксидных стекол представленными в [24]. В табл. 7 представлены силы осцилляторов и параметры интенсивности Джадда–Офельта, полученные для исследуемой халькогенидной системы Ga–Ge–S:Er³⁺, а также для фосфатных, германатных, теллуритных стекол по данным работы [24]. Из табл. 7 видно, что силы осцилляторов и параметры интенсивности для исследуемой системы превосходят соответствующие параметры для оксидных стекол (фосфатных, германатных, теллуритных).

Кроме того, следует отметить, что параметр Ω_2 исследуемой системы примерно в два раза превосходит тот же параметр для оксидных стекол. Такое относительно большое значение параметра Ω_2 позволяет предположить, что для халькогенидных стекол характерна большая асимметрия кристаллического поля на РЗИ и, кроме того, энергетический зазор между $4f^{N-1}5d^1$ -конфигурациями меньше, чем для других стекол. Таким образом, в халькогенидных стеклах наблюдается большее смешение состояний различной четности, что должно приводить к большим вероятностям переходов РЗИ.

В табл. 8 представлены значения вероятностей спонтанных излучательных переходов для некоторых уровней эрбия в составе различных стеклообразных систем. Как видно из табл. 8, халькогенидные стекла имеют большие значения вероятностей спонтанных излучательных переходов по сравнению с оксидными стеклами, что обусловлено большими значениями параметров интенсивности Джадда–Офельта и высоким показателем преломления, характерными для исследуемой основы. Таким образом, можно сделать вывод о том, что исследуемые стекла Ga–Ge–S: ${\rm Er}^{3+}$ являются более перспективными оптическими материалами по сравнению с фосфатными, германатными и теллуритными, поскольку имеют более высокие вероятности спонтанных излучательных переходов ионов ${\rm Er}^{3+}$ и силы осцилляторов.

Заключение. Исследование спектроскопических параметров халькогенидных стекол системы Ga–Ge–S: Er^{3+} показало, что увеличение концентрации Er_2S_3 приводит к уменьшению степени асимметрии кристаллического поля окружения иона эрбия, а увеличение содержания Ga₂S₃ – к уменьшению степени ковалентности связи между ионами окружения и редкоземельными ионами.

Предполагается, что уменьшение степени асимметрии кристаллического поля обусловлено тем, что в исследуемых халькогенидных стеклах состав второй координационной сферы эрбия становится более однородным.

Кроме того, продемонстрирована корреляция ширины запрещенной зоны и степени ковалентности связи окружения редкоземельных ионов в стекле при изменении содержания Ga_2S_3 . На основе экспериментальных результатов установлено, что по сравнению с оксидными стеклами халькогенидные имеют более высокие вероятности спонтанных излучательных переходов ионов Er^{3+} и силы осцилляторов, что делает их наиболее перспективными люминесцентными материалами.

Авторы благодарят Я. Г. Григорьеву за синтез образцов ХГС, А. В. Поволоцкого за помощь в экспериментальных исследованиях.

Список литературы

- Turnbull D. A., Gu S. Q., Bishop S. D. Photoluminescence studies of broad-band excitation mechanisms for Dy emission in Dy: As₁₂Ge₃₃Se₃₅ glasses // J. Appl. Phys. 1996. V. 80(4).
 P. 2436–2441.
- Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. Т. 2. М.: Мир, 1982. 658 с.
- 3. *Барановский С. Д., Карпов В. Г.* Локализованные электронные состояния в стеклообразных полупроводниках // ФТП. 1987. Т. 21. №1. С. 3–17.
- 4. *Mott N. F., Davis E. A., Street R. A.* States in the gap and recombination in amorphous semiconductors // Adv. Phys. 1977. V. 24. P. 273–277.
- 5. Street R. A. Luminescence in amorphous semiconductors // Adv. Phys. 1976. V. 25. N 4.

P. 397-454.

- Дегтярев С. В., Маньшина А. А., Курочкин А. В., Жужельский Д. В., Григорьев Я. Г., Тверянович Ю. С. Стеклообразование и люминесценция стекол системы Nd₂S₃-Ga₂S₃-GeS₂ // Физ. и хим. стекла. 2001. Т. 27. № 3. С. 318–325.
- Man'shina A. A., Kurochkin A. V, Degtyarev S. V., Grigor'ev Ya. G., Tverjanovich A. S., Tver'yanovich Yu. S., Smirnov V. B. Glasses of the Ga₂S₃–GeS₂ system doped with rare-earth ions (Nd³⁺, Er³⁺) as active optical materials // 5/2001, Proc. SPIE. 2001. V. 4429. P. 80–88.
- 8. *Тверянович Ю. С.* Халькогенидные стекла полифункциональный материал современной техники // Петербургский журнал электроники. 1993. № 1. С. 66–72.
- 9. Seddon A. B. Chalcohalides: glass-forming systems and progress in application of percolation theory // J. Non-Crystalline Solids. 1997. V. 213/214. P. 22–29.
- 10. *Mitkova M., Boolchand P.* Microscopic origin of the glass forming tendency in chalcogenides and constraint theory // J. Non-Crystalline Solids. 1998. V. 240. P. 1–21.
- Meresse Y., Fonteneau G., Lucas J. New chalcogenide glasses in the system BaS–CdS–GeS₂ // J. Non-Crystalline Solids. 1997. V. 213/214. P. 55–57.
- Morgan S. P., Furniss D., Seddon A. B., Moore M. W. Effect of glass purity on the glass stability and physical properties of Ga–La–S glasses // J. Non-Crystalline Solids. 1997. V. 213/214. P. 72–78.
- Борисова З. У. Халькогенидные полупроводниковые стекла. Л.: Изд. ЛГУ, 1983.
 344 с.
- Виноградова Г. З. Стеклообразование и фазовые равновесия в халькогенидных системах. М.: Наука, 1984. 176 с.
- 15. *Мак А. А, Сомс Л. Н., Фромзель В. А., Яшин В. Е.* Лазеры на неодимовом стекле. М.: Наука, 1990. 288 с.
- Ofelt G. S. Intensities of crystal spectra of rare-earth ions // J. Chem. Phys. 1962. V. 37.
 N 3. P. 511–520.
- 17. Weber M. J. Probabilities for radiative and nonradiative decay of Er³⁺ in LaF₃ // Phys. Rev. 1967. V. 157. N 2. P. 262–271.
- Ebendorff-Heidepriem H., Ehrt D., Bettinelli M., Speghini A. Effect of glass composition on Judd–Ofelt parameters and radiative decay rates of Er³⁺ in fluoride phosphate and phosphate glasses // J. Non-Crystalline Solids. 1998. V. 240. P. 66–78.
- 19. *Ravi Kanth Kumar V. V., Bhatnagar Anil K.* Effect of modifier ions on the covalency of Nd³⁺ ions in cadmium borate glasses // Opt. Mater. 1998. N 11. P. 41–51.
- 20. *Hiromichi Takebe, Yoshikazu Nageno, Kenji Morinaga*. Compositional dependence of Judd-Ofelt parameters in silicate, borate, and phosphate glasses // J. Amer. Cream. Soc. 1995.

V. 78. N 5. P. 1161–1168.

- 21. *Tanabe S., Ohyagi T., Soga N., Hanada T.* Compositional dependence of Judd–Ofelt parameters of Er³⁺ ions in alkali-metal borate glasses // Phys. Rev. B. 1992. P. 3305–3310.
- Yoshikazu Nageno, Hiromichi Takebe, Kenji Morinaga. Correlation between radiative transition probabilities of Nd³⁺ and composition in silicate, borate, and phosphate glasses // J. Amer. Ceram. Soc. 1993. V. 76. N 12. P. 3081–3086.
- 23. Сорокин Ю. М., Ширяев В. С. Оптические потери в световодах. Н. Новгород: Изд. ННГУ, 2000. 324 с.
- Pelle F., Gardant N., Auzel F. Effect of excited-state population density on nonradiative multiphonon relaxation rates of rare-earth ions // J. Opt. Soc. Amer. 1998. V. 15. N 2. P. 667–669.

Подписи к рисункам

Шарова, ФХС, 291

Рис. 1. Спектр поглощения ХГС системы Ga-Ge-S:Er³⁺.

Рис. 2. Зависимость сил осциллятора переходов иона Er^{3+} от концентрации Er_2S_3 в стекле системы Ga–Ge–S: Er^{3+} .

Переходы: ${}^{4}I_{15/2} \rightarrow {}^{4}F_{9/2}(1), {}^{4}I_{15/2} \rightarrow {}^{4}I_{11/2}(2), {}^{4}I_{15/2} \rightarrow {}^{4}S_{3/2}(3).$

Рис. 3. Зависимость силы осциллятора перехода ${}^{4}I_{15/2} \rightarrow {}^{2}H_{11/2}$ иона Er^{3+} от концентрации $\mathrm{Er}_{2}\mathrm{S}_{3}$ в стекле системы Ga–Ge–S:Er³⁺.

Рис. 4. Зависимость силы осциллятора перехода ${}^{4}I_{15/2} \rightarrow {}^{4}I_{11/2}$ иона Er^{3+} от содержания $\mathrm{Ga}_{2}\mathrm{S}_{3}$ в системе Ga -Ge-S:Er³⁺.

Рис. 5. Зависимость Ω_2 от содержания Er_2S_3 в системе Ga–Ge–S: Er^{3+} .

Рис. 6. Зависимость Ω_4 от содержания Er_2S_3 в системе Ga–Ge–S: Er^{3+} .

Рис. 7. Зависимость Ω_6 от содержания Er_2S_3 в системе Ga–Ge–S: Er^{3+} .

Рис. 8. Зависимость Ω_2 от содержания Ga_2S_3 в системе $Ga-Ge-S:Er^{3+}$.

Рис. 9. Зависимость Ω_4 от содержания Ga_2S_3 в системе $Ga-Ge-S:Er^{3+}$.

Рис. 10. Зависимость Ω_6 от содержания Ga₂S₃ в системе Ga–Ge–S:Er³⁺.

Рис. 11. Зависимость Ω_6 и ширины запрещенной зоны (E_g) системы Ga–Ge–S:Er³⁺ от содержания Ga₂S₃.

Рис. 12. Зависимость радиационного времени жизни ($\tau_{изл}$) переходов Er^{3+} от концентрации Er_2S_3 в системе Ga–Ge–S: Er^{3+} .

Переходы: ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}(1), {}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}(2), {}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}(3).$

Таблица 1 Силы осцилляторов иона Er^{3+} в системе Ga–Ge–S: Er^{3+} при изменении содержания Er_2S_3 от 0.49 до 4.64 мол. %

	Содержание Er ₂ S ₃ , мол. %						
Переходы	0.49	0.98	1.46	1.94	2.88	3.78	4.64
	Силы осцилляторов (<i>f</i> _{<i>j</i>, 10} ⁻⁶)						
$^{2}H_{11/2} \rightarrow ^{4}I_{15/2}$	16.64	18.09	15.01	16.83	22.8	13.07	10.18
${}^4S_{3/2} \rightarrow {}^4I_{15/2}$	0.56	0.77	0.52	0.74	0.54	0.40	0.47
${}^4F_{9/2} \rightarrow {}^4I_{15/2}$	4.66	4.44	4.43	4.63	6.40	3.34	4.30
${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$	1.29	0.56	0.89	1.21	1.35	0.56	0.55
${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$	1.55	1.20	1.43	1.27	1.94	1.13	1.22

Силы осцилляторов иона Er³⁺ в системе Ga–Ge–S:Er³⁺ при изменении содержания Ga₂S₃ от 10 до 30 мол. %

	Содержание Ga ₂ S ₃ , мол. %						
Переходы							
	10	15	20	30			
	Силы осцилляторов ($f_{j, 10}^{-6}$)						
${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$	16.01	11.86	15.40	17.12			
${}^4S_{3/2} \rightarrow {}^4I_{15/2}$	0.57	0.35	0.60	0.46			
${}^4F_{9/2} \rightarrow {}^4I_{15/2}$	3.84	5.37	4.60	4.60			
${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$	0.47	0.65	0.62	0.56			
${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$	0.88	1.70	1.40	1.30			

Таблица З

Параметры интенсивности Ω_t для разной концентрации Er_2S_3 в системе Ga-Ge-S:Er³⁺

	Параметры Ω_t , 10^{-20} см ²				
Концентрация Er ₂ S ₃ , мол. %	Ω_2	Ω_4	Ω_6		
0.49	6.9 ± 0.5	2.5 ± 0.2	1.7 ± 0.1		
0.98	7.9 ± 0.1	2.34 ± 0.02	1.47 ± 0.02		
1.46	6.3 ± 0.3	2.3 ± 0.1	1.6 ± 0.1		
1.94	7.0 ± 0.4	2.7 ± 0.1	1.4 ± 0.1		
2.88	9.6 ± 0.5	3.5 ± 0.2	2.1 ± 0.1		
3.78	5.7 ± 0.2	1.7 ± 0.1	1.3 ± 0.1		
4.64	3.9 ± 0.2	2.2 ± 0.1	1.6 ± 0.1		

Параметры интенсивности Ω_t для разного содержания Ga_2S_3 в системе
Ga–Ge–S:Er ³⁺

	Параметры Ω_t , 10^{-20} см ²				
Концентрация Ga ₂ S ₃ , мол. %	Ω_2	Ω_4	Ω_6		
10	6.9 ± 0.1	2.19 ± 0.02	1.05 ± 0.01		
15	4.4 ± 0.4	2.6 ± 0.2	2.1 ± 0.2		
20	6.5 ± 0.2	2.3 ± 0.1	1.7 ± 0.1		
30	7.3 ± 0.2	2.4 ± 0.7	1.5 ± 0.1		

Вероятность спонтанных излучательных переходов ионов Er³⁺ для разного содержания Er₂S₃ в системе Ga–Ge–S:Er³⁺

	Содержание Er ₂ S ₃ , мол.%						
Переходы	0.49	0.98	1.46	1.94	2.88	3.78	4.64
	Вероятность спонтанных излучательных переходов A_j , с ⁻¹						-1
$^{2}H_{11/2} \rightarrow ^{4}I_{15/2}$	37233	41130	34118	38198	51858	29788	23199
${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$	6302	5769	6459	5589	8228	5044	6125
${}^4S_{3/2} \rightarrow {}^4I_{13/2}$	2559	2343	2623	2270	3342	2049	2488
${}^4S_{3/2} \rightarrow {}^4I_{11/2}$	201	185	205	181	265	159	194
${}^4S_{3/2} \rightarrow {}^4I_{9/2}$	333	309	332	316	448	254	315
${}^4F_{9/2} \rightarrow {}^4I_{15/2}$	8146	7683	7854	8313	11333	5862	7452
${}^4F_{9/2} \rightarrow {}^4I_{13/2}$	412	399	392	427	577	298	358
${}^4F_{9/2} \rightarrow {}^4I_{11/2}$	321	308	322	293	425	258	288
${}^4F_{9/2} \rightarrow {}^4I_{9/2}$	14	16	13	14	20	12	8
${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$	785	752	733	854	1126	534	696
${}^{4}I_{9/2} \rightarrow {}^{4}I_{13/2}$	243	223	249	217	318	194	236
${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$	815	786	815	746	1079	657	719
${}^{4}I_{11/2} \rightarrow {}^{4}I_{13/2}$	98	92	98	90	130	77	91

Вероятность спонтанных излучательных переходов ионов Er ³⁺
в стеклах с разным содержанием Ga ₂ S ₃ в системе Ga–Ge–S:Er ³

		Содержание	Ga ₂ S ₃ , мол. %						
Переходы	10	15	20	30					
	Вероятности	Вероятность спонтанных излучательных переходов A_j , с ⁻¹							
	36355	26995	35014	38667					
${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$	4097	8236	6692	5918					
${}^{4}S_{3/2} \rightarrow {}^{4}I_{13/2}$	1664	3345	2718	2403					
${}^4S_{3/2} \rightarrow {}^4I_{11/2}$	134	260	212	189					
${}^{4}S_{3/2} \rightarrow {}^{4}I_{9/2}$	241	409	341	317					
${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$	6617	9297	7994	7879					
${}^{4}F_{9/2} \rightarrow {}^{4}I_{13/2}$	351	439	399	404					
${}^{4}F_{9/2} \rightarrow {}^{4}I_{11/2}$	230	380	334	309					
${}^{4}F_{9/2} \rightarrow {}^{4}I_{9/2}$	14	9	13	15					
${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$	701	831	739	771					
${}^{4}I_{9/2} \rightarrow {}^{4}I_{13/2}$	159	316	258	229					
${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$	592	948	844	786					
${}^{4}I_{11/2} \rightarrow {}^{4}I_{13/2}$	69	119	101	93					

Силы осцилляторов переходов иона Er³⁺ в оксидных и халькогенидных (Ga–Ge–S:Er³⁺) стеклах

$S^{'},L^{'},J^{'}$	Силы осцилляторов ($f_{j, 10}^{-6}$) в стеклах					
	Фосфатные	Германатные	Теллуритные	Ga–Ge–S:Er ³⁺		
	[24]			данные авторов		
${}^{4}I_{11/2}$	0.35	0.27	0.36	1.27		
⁴ <i>I</i> _{9/2}	0.40	0.17	0.32	1.21		
${}^{4}F_{9/2}$	1.55	0.07	1.34	4.63		
${}^{4}S_{3/2}$	0.23	0.12	0.24	0.74		
${}^{2}H_{11/2}$	5.96	6.45	5.33	16.83		
п	1.50	1.66	2.15	2.4		
$Ω_2, 10^{-20}$ cm ²	5.01	6.33	4.61	7.0		
$Ω_4, 10^{-20}$ cm ²	2.20	0.93	1.74	2.7		
$Ω_6, 10^{-20}$ cm 2	0.86	0.46	0.91	1.4		

Вероятности спонтанных излучательных переходов иона Er³⁺ в оксидных и халькогенидных (Ga–Ge–S:Er³⁺) стеклах

Переходы	Вероятность спонтанных излучательных переходов A_j , с ⁻¹				
	Фосфатные	Ga–Ge–S:Er ³⁺			
		данные авторов			
${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$	107	104	377	746	
${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$	68	55	239	561	

Рис.1

Рис.2

Рис. 3

Рис.4

Рис.5

Рис.6

Рис.7

Рис.8

Рис.9

Рис.10

Рис.11

Рис.12