© Исаева А. С., Кожина И. И., Тойкка А. М., Зверева И. А.

СТРУКТУРНО-ХИМИЧЕСКИЙ МЕХАНИЗМ ФОРМИРОВАНИЯ ТВЕРДЫХ РАСТВОРОВ В СИСТЕМЕ La₂SrAl₂O₇-Ho₂SrAl₂O₇

Санкт-Петербургский государственный университет, СПб, Россия, 199034, Санкт-Петербург, Университетская наб., 7/9

Исследованы процессы фазообразования в системе $La_2O_3-Ho_2O_3-SrO-Al_2O_3$ в области температур 1200–1500 °С. Приведены структурные характеристики соединений, известных в исследуемой системе. Установлено, что формирование твердых растворов ($La_{1-x}Ho_x$)₂SrAl₂O₇ протекает через образование соединений LaAlO₃, LaSrAlO₄, SrAl₂O₄ и SrHo₂O₄. При росте содержания гольмия, а также при увеличении температуры происходит переход от механизма, в котором лимитирующей стадией является взаимодействие LaAlO₃ и LaSrAlO₄, к механизму, в котором определяющими являются взаимодействия SrAl₂O₄ с Ho₂O₃ и SrHo₂O₄ с Al₂O₃.

Введение. В настоящее время все большее внимание уделяется исследованию твердых растворов в сложных оксидных системах, содержащих редкоземельные элементы, в связи с широкими потенциальными возможностями их применения в электронной технике. Твердые растворы на основе алюминатов РЗЭ и ЩЗЭ также относятся к числу перспективных материалов для создания высокотемпературной керамики, обладающей высокой механической и термической устойчивостью, поэтому исследование процессов фазообразования в системах $Ln_2O_3-Ln'_2O_3-SrO-Al_2O_3$ представляет не только фундаментальный, но и практический интерес.

В данной работе представлены результаты исследования процессов фазообразования в частном разрезе La₂SrAl₂O₇–Ho₂SrAl₂O₇ системы La₂O₃–Ho₂O₃–SrO–Al₂O₃.

Поступило 14 декабря 2004 г.

Сложные оксиды La₂SrAl₂O₇ и Ho₂SrAl₂O₇ являются крайними членами ряда алюминатов Ln₂SrAl₂O₇ [1], кристаллизующихся в структурном типе Sr₃Ti₂O₇[2]. Соединения Ln₂SrAl₂O₇ относятся к перовскитоподобным слоистым фазам, построенным по блочному принципу путем чередования слоев структуры перовскита (*P*) и фрагментов структуры каменной соли (*RS*) в последовательности P_2/RS . В структуре Ln₂SrAl₂O₇ (Ln = La–Ho) установлено упорядочение катионов Ln³⁺ и Sr²⁺, которые заселяют две структурные позиции (9-координированное состояние в слое *P* и 12-координированное состояние в слое *RS*). Распределение по неэквивалентным позициям зависит от природы атомов P3Э: в ряду La–Ho происходит переход от почти статистически беспорядочного распределения катионов La³⁺ и Sr²⁺ в La₂SrAl₂O₇ к упорядоченному распределению с преимущественной заселенностью катионами Ho³⁺ слоя со структурой каменной соли в оксиде Ho₂SrAl₂O₇ [1, 3].

Структурно-химический механизм образования оксидов $Ln_2SrAl_2O_7$ изучался в работах [4–6]. Установлено, что синтез соединений со структурой P_2/RS идет через образование фаз с более простыми структурными типами P и P/RS, если эти фазы устойчивы при температуре синтеза. Это характерно для $Ln_2SrAl_2O_7$ (Ln = La, Nd, Sm), где промежуточными продуктами являются соединения $LnAlO_3$ (P) и $LnSrAlO_4$ (P/RS). Механизм образования $Ln_2SrAl_2O_7$ (Ln = Gd, Tb, Dy, Ho) вследствие неустойчивости фазы $LnAlO_3$ при температуре синтеза идет через взаимодействие $SrAl_2O_4$ и Ln_2O_3 . Для соединений первой половины ряда $Ln_2SrAl_2O_7$ (La, Nd, Sm) скорость реакции синтеза от La до Sm возрастает, температура синтеза уменьшается, что свидетельствует о большей реакционной способности $LnAlO_3$ и $LnSrAlO_4$ в случае Nd и Sm по сравнению с La-содержащими алюминатами. В ряду Gd–Ho скорость синтеза $Ln_2SrAl_2O_7$ уменьшается, а температура синтеза увеличивается.

Механизм образования твердых растворов типа $(Ln_xLn'_{1-x})_2SrAl_2O_7$ был впервые исследован в системе $Nd_2SrAl_2O_7$ —Ho $_2SrAl_2O_7$ [7]. Показано, что он определяется содержанием неодима и температурой.

Исходные компоненты системы $La_2SrAl_2O_7$ —Ho $_2SrAl_2O_7$ по сравнению с компонентами системы $Nd_2SrAl_2O_7$ —Ho $_2SrAl_2O_7$ различаются между собой кинетикой образования. Так, образование $La_2SrAl_2O_7$ начинается только при 1300 °C, в то время как $Nd_2SrAl_2O_7$ уже при 1000 °C, хотя синтез промежуточных соединений $LnAlO_3$ и $LnSrAlO_4$ начинается при 1000 °C для обеих систем. Можно предположить, что из-за разницы в температурах синтеза механизм образования твердого раствора в системе $La_2SrAl_2O_7$ —Ho $_2SrAl_2O_7$ будет иным, чем в системе $Nd_2SrAl_2O_7$ —Ho $_2SrAl_2O_7$, и это позволит более точно выявить влияние природы РЗЭ на механизм синтеза твердых растворов ($Ln_xLn'_{1-x}$) $_2SrAl_2O_7$ и его возможную зависимость от содержания гольмия и температуры.

Экспериментальная часть. Изучение фазообразования в системах La₂O₃-Ho₂O₃-SrO-Al₂O₃ осуществляли методом изотермического «отжигазакалки» в интервале температур 1200–1500 °C по реакции

 $(1-x)La_2O_3 + xHo_2O_3 + Al_2O_3 + SrCO_3 \rightarrow (La_{1-x}Ho_x)_2SrAl_2O_7 + CO_2.$ (1)

В качестве исходных реагентов использовали карбонат стронция квалификации «осч» 7-2 (ТУ 6-09-01-659-91), оксиды лантана и гольмия (содержанием основного компонента 99.95 и 99.99 % соответственно) и тонкодисперсный оксид алюминия (Johnson Mattey 99.99 %, 1–15 мкм), содержащий некоторое количество γ -модификации. Шихту, приготовленную исходя из стехиометрического соотношения исходных компонентов по (1), прессовали в таблетки массой 0.5 г и диаметром 0.7 см. Обжиг образцов проводили в силитовой печи, контроль температуры осуществляли платино-родиевой термопарой. Изотермический режим термообработки обеспечивали с точностью ±1 °C с помощью программного терморегулятора ТП-403.

Фазовый состав и последовательность фазовых превращений контролировали рентгенографически, съемку проводили на дифрактометре ДРОН-3 (Си K_{α} -излучение) в интервале углов 2 θ = 6–50 °C. Дифрактограммы однофаз-

ных твердых растворов и ряда образцов реакционной смеси были сняты на дифрактометре Philips Analitical X-ray PW3020 в интервале углов 20, равном 5–110 °C. На рис. 1 и 2 представлены дифрактограммы продуктов 5-часового обжига при температуре 1300°C реакционных смесей, исходный состав которых соответствует стехиометрии твердых растворов $(La_{0.7}Ho_{0.3})_2SrAl_2O_7$ и $(La_{0.3}Ho_{0.7})_2SrAl_2O_7$, и стехиометрии однофазного твердого раствора $(La_{0.5}Ho_{0.5})_2SrAl_2O_7$, полученного в результате 30 ч обжига при температуре 1450 °C.

Обсуждение результатов. При анализе фазового состава учитывалось многообразие соединений, известных в системе La_2O_3 -Ho₂O₃-SrO-Al₂O₃, структурные характеристики которых приведены в табл. 1. Фазовый состав продукта, полученного после термообработки реакционной смеси, в зависимости от времени и температуры для трех твердых растворов ($La_{1-x}Ho_x)_2SrAl_2O_7$ представлен в табл. 2.

Анализ данных таблицы позволяет выделить следующие основные результаты.

Температура синтеза 1200 °С. В течение первых 1–5 ч образуются промежуточные соединения LaAlO₃, LaSrAlO₄ и SrAl₂O₄. В результате длительного обжига в течение 10–24 ч при содержании гольмия x = 0.5 и 0.7 образуются в небольшом количестве La₂SrAl₂O₇ и следы Ho₂SrAl₂O₇. Процесс образования этих индивидуальных соединений происходит в I и II частных разрезах тройных систем, которые являются составными частями системы La₂O₃-Ho₂O₃-SrO-Al₂O₃ (рис. 3) в соответствии с промежуточными реакциями

$$LaAlO_3 + LaSrAlO_4 \rightarrow La_2SrAl_2O_7 , \qquad (2)$$

$$SrAl_2O_4 + Ho_2O_3 \rightarrow Ho_2SrAl_2O_7$$
. (3)

В этих же условиях при малом содержании гольмия (x = 0.3) сложный оксид Ho₂SrAl₂O₇ не фиксируется даже в следовых количествах, в то время как La₂SrAl₂O₇ обнаруживается в заметном количестве. Кроме того, наблюдаются рефлексы, которые могут быть отнесены к фазе SrAl₄O₇ или, вероятно, к твердому раствору SrAl_{4-x}Ho_xO₇. О возможности замещения алюминия гольмием свидетельствует существование изоструктурных соединений SrAl₂O₄ и SrHo₂O₄, а также интерлантаноида LaHoO₃, изоструктурного LaAlO₃. Кроме того, гольмий имеет малый ионный радиус, для шестикоординированного состояния $R_{\text{Ho}}^{3+} = 0.901$ Å, $R_{\text{Al}}^{3+} = 0.535$ Å [8]. Однако в структуре SrAl₄O₇ ионы алюминия находятся в тетраэдрическом окружении, поэтому замещение Al атомами гольмия невыгодно. Неудавшиеся попытки синтеза твердых растворов SrAl_{4-x}Ho_xO₇ подтвердили это.

Температура синтеза 1300 °С. В реакционной смеси, обогащенной лантаном (x = 0.3), уже после 1 ч прокаливания в следовых количествах появляется фаза со структурой P_2/RS в виде индивидуального соединения La₂SrAl₂O₇, а в случае эквимолярного содержания La и Ho (x = 0.5) – в виде твердого раствора (La_{1-x}Ho_x)₂SrAl₂O₇. В смеси, обогащенной гольмием, фаза со структурой P_2/RS образуется только после 3 ч прокаливания. При проведении термообработки в течение 5 и 10 ч в небольшом количестве был обнаружен гольмиат стронция SrHo₂O₄, кристаллизующийся в структурном типе шпинели. Это свидетельствует о том, что синтез Ho₂SrAl₂O₇ также протекает через промежуточную стадию

$$SrHo_2O_4 + Al_2O_3 \rightarrow Ho_2SrAl_2O_7.$$
(4)

Факт взаимодействия $SrHo_2O_4$ и исходного оксида алюминия с образованием $Ho_2SrAl_2O_7$ был подтвержден независимым синтезом, согласно реакции (4), в III частном разрезе исследуемой системы (рис. 3, δ). Оксид $SrHo_2O_4$ был предварительно синтезирован при температуре 1500 °C по реакции

$$Ho_2O_3 + SrCO_3 \rightarrow SrHo_2O_4 + CO_2.$$
(5)

Установлено, что процесс образования $Ho_2SrAl_2O_7$ при использовании в качестве реагентов $SrHo_2O_4$ и Al_2O_3 протекает при более низкой температуре (1300 °C), чем при использовании исходных компонентов по реакции (1).

Температура синтеза 1400 °С. Наблюдается более интенсивное протекание реакции, т.е. при всех концентрациях гольмия уже через 1 ч происходит образование фазы со структурой P_2/RS . Однако в этом случае имеет место существенное влияние исходного состава реагентов. Так, при малом содержании гольмия образуется соединение La₂SrAl₂O₇, при эквимолярном соотношении лантана и гольмия формируется твердый раствор изоморфного замещения (La_{1-x}Ho_x)₂SrAl₂O₇, а при x = 0.7 образуется твердый раствор, близкий по составу к соединению Ho₂SrAl₂O₇. Твердые растворы со структурой P_2/RS появляются через 3 ч для x = 0.7 и через 5 ч для x = 0.3. Однафазные образцы твердых растворов указанных составов получаются после 10 ч прокаливания.

Температура синтеза 1500 °С. Через 5 ч в реакционной смеси преобладает фаза твердого раствора и наблюдаются незначительные примеси соединений Ho₂O₃ и SrAl₂O₄.

Непрерывный ряд твердых растворов (La_{1-x}Ho_x)₂ SrAl₂O₇ для $0 \le x \le 1$ был получен путем прокаливания при температуре 1450 °C в течение 30 ч. Длительное прокаливание необходимо для достижения равновесного распределения катионов РЗЭ по структурным позициям. На дифрактограмме твердого раствора (La_{0.5}Ho_{0.5})₂SrAl₂O₇ (рис. 2) все максимумы соответствуют рефлексам структурного типа Sr₃Ti₂O₇, в котором кристаллизуются сложные алюминаты Ln₂SrAl₂O₇. Об образовании непрерывного ряда твердых растворов свидетельствует монотонный характер изменения параметров элементарной ячейки в зависимости от содержания гольмия (рис. 4).

Исследование процессов фазообразования в псевдобинарном разрезе $La_2SrAl_2O_7$ -Ho_ $2SrAl_2O_7$ системы La_2O_3 -Ho_ $2O_3$ -SrO-Al_ $2O_3$ позволяет выявить структурно-химический механизм образования твердых растворов со структурой P_2/RS . Присутствие соединений LaAlO₃ и LaSrAlO₄ в реакционной смеси при всех температурах синтеза свидетельствует о том, что процесс образования твердых растворов протекает через промежуточную стадию по реакции (2). Именно такой механизм образования характерен для начала ряда лантаноидов $Ln_2SrAl_2O_7$ (Ln = La, Nd, Sm) [4, 5]. То, что в реакционной смеси наряду с LaA- IO_3 и LaSrAlO₄ присутствует также Ho₂O₃ и SrAl₂O₄, указывает на протекание

реакции (3), которая является лимитирующей при синтезе Ln₂SrAl₂O₇ второй половины ряда лантаноидов начиная с гадолиния [6].

По характеру дифрактограмм реакционной смеси, когда твердый раствор только формируется, судить о его составе (о соотношении La и Ho) весьма затруднительно, но можно выделить следующую закономерность: образование твердых растворов, близких по составу к индивидуальным соединениям $La_2SrAl_2O_7$ и Ho₂SrAl₂O₇, фиксируется наилучшим образом при значительном различии в содержании лантана и гольмия.

Оценка состава твердого раствора в реакционной смеси была проведена путем сравнения параметров элементарной ячейки перовскитоподобной слоистой фазы типа P_2/RS в реакционной смеси (табл. 3) и в однофазных твердых растворах (рис. 4). При анализе данных табл. 3 можно отметить следующее: 1) в продукте из реакционной смеси, соответствующей твердому раствору (La_{0.7}Ho_{0.3})₂SrAl₂O₇, после 5 ч синтеза обнаруживается твердый раствор, близкий по составу (La_{0.77}Ho_{0.23})₂SrAl₂O₇; 2) в продукте, полученном из реакционной смеси, соответствующей твердому раствору (La_{0.3}Ho_{0.7})₂SrAl₂O₇, – раствор, близкий по составу (La_{0.2}Ho_{0.8})₂SrAl₂O₇; 3) фаза со структурой перовскита представляет собой индивидуальное соединение LaAlO₃, в матрице которого не наблюдается изоморфного замещения лантана на гольмий.

Образование твердых растворов, близких по составу $Ho_2SrAl_2O_7$, наблюдается при более низкой температуре (1300 °C), чем температура образования $Ho_2SrAl_2O_7$ (1400 °C). При этом оксид La_2O_3 исчезает из реакционной смеси достаточно быстро, образуя LaAlO₃ и LaSrAlO₄, а оксид Ho_2O_3 присутствует в реакционной смеси вплоть до образования однофазных твердых растворов. Это связано с более медленным протеканием реакции образования гольмий содержащего оксида и медленным вхождением атомов гольмия в матрицу твердого раствора.

Тот факт, что твердые растворы $(La_{1-x}Ho_x)_2SrAl_2O_7$ в отличие от $(Nd_{1-x}Ho_x)_2SrAl_2O_7$ образуются, хотя и в незначительной степени по реакции (4)

с участием SrHo₂O₄, объяснить достаточно трудно. Возможно, различия обусловлены более быстрым протеканием реакции образования как чистого соединения Nd₂SrAl₂O₇, так и неодимсодержащих твердых растворов, тогда как за короткое время синтеза оксид SrHo₂O₄ не образуется. В любом случае более существенные различия в природе катионов La⁺³ и Ho⁺³, нежели пары Nd⁺³ и Ho⁺³, вносят специфику в механизм образования растворов (Ln_{1-x}Ln'_x)₂ SrAl₂O₇.

Заключение. В результате проведенного исследования установлено, что в системе La_2O_3 -Ho₂O₃-SrO-Al₂O₃ появление зародышей фаз перовскитоподобной слоистой структуры типа P_2/RS происходит при 1200 °C. Твердые растворы ($La_{1-x}Ho_x$)₂SrAl₂O₇ без заметных примесей образуются при температуре 1400 °C и выше в течение 24–40 ч.

Образование твердых растворов (La_{1-x}Ho_x)₂SrAl₂O₇ протекает через промежуточные соединения LaAlO₃, LaSrAlO₄, SrAl₂O₄ и SrHo₂O₄. В исходной реакционной смеси, обогащенной лантаном, в интервале температур синтеза 1200–1500 °C сначала появляется индивидуальное соединение La₂SrAl₂O₇, а затем путем изоморфного замещения атомов лантана атомами гольмия происходит образование твердых растворов со слоистой структурой P_2/RS . При образовании твердых растворов, обогащенных гольмием, при высоких температурах атомы гольмия также входят в уже существующую матрицу твердого раствора, изменяя его состав. Такое направление процесса «замещения» вполне согласуется с фактом стабилизации слоистой структуры P_2/RS в ряду La–Ho ранее обнаруженным в ходе структурных исследований оксидов La₂SrAl₂O₇.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (04-03-32176) и программы «Университеты России» (УР.06.01.317).

Список литературы

- Zvereva I., Smirnov Yu., Gusarov V., Popova V., Choisnet J. Complex aluminates RE₂SrAl₂O₇ (RE = La, Nd, Sm-Ho): cation ordering and stability of the double perovskite slab-rock salt layer P₂/RS intergrowth // Solid State Sci. 2003. V. 5. N 2. P. 343–349.
- Ruddlesden S. N., Popper P. The compounds Sr₃Ti₂O₇ and its structure // Acta Crystallogr. 1958. V. 11. N 1. P. 54–55.
- Зверева И. А, Смирнов Ю. Е, Вагапов Д. А, Шуане Ж. Распределение катионов и межатомные взаимодействия в оксидах с гетеровалентным изоморфизмом атомов. II Сложные алюминаты Ln₂SrAl₂O₇ (Ln = La, Nd, Gd) // ЖОХ. 2000. Т. 70. № 12. С. 1957–1962.
- 4. Зверева И. А, Попова В. Ф, Вагапов Д. А, Тойкка А. М, Гусаров В. В. Кинетика образования фаз Руддлесдена-Поппера. І. Механизм формирования La₂SrAl₂O₇ // ЖОХ. 2001. Т. 71. № 8. С. 1254–1258.
- Зверева И. А., Попова В. Ф., Пылкина Н. С., Гусаров В. В. Кинетика образования фаз Руддлесдена–Поппера. II. Механизм формирования Nd₂SrAl₂O₇ и Sm₂SrAl₂O₇ // ЖОХ. 2003. Т. 73. № 1. С. 47–52.
- Зверева И. А., Попова В. Ф., Миссюль А. Б., Тойкка А. М., Гусаров В. В. Кинетика образования фаз Руддлесдена-Поппера. III. Механизм формирования Gd₂SrAl₂O₇ // ЖОХ. 2003. Т. 73. № 5. С. 724–728.
- Миссюль А. Б. Марченко Е. М. Попова В. Ф. Зверева И. А. Механизм и кинетика образования твердых растворов в системе Nd₂SrAl₂O₇- Ho₂SrAl₂O₇ // Физ. и хим. стекла. 2003. Т. 29. № 6. C. 839–844.
- Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and halcogenides // Acta Crystallogr. A. 1976.
 V. 32. N 5. P. 751–766.

- Primak W., Kaufman H., Ward R. X-ray diffraction studies of systems involved in the preparation of alkaline earth sulfide and selenide phosphors // J. Amer. Chem. Soc. 1948. V. 70. N 12. P. 2043–2046.
- Oetzel M., Heger G. Laboratory X-ray powder diffraction: a comparison of different geometries with special attention to the usage of the CuKalpha doublet // J. Appl. Crystallogr. 1999. V. 32. N 4. P. 799–807.
- Aldebert P., Traverse J. P. Etude par diffraction neutronique des structures de haute temperature de La₂O₃ et Nd₂O₃// Mater. Res. Bull. 1979. V. 14. N 3. P. 303–323.
- Bartos A., Lieb K. P., Uhrmacher M., Wiarda D. Refinement of atomic positions in bixbyite oxides using perturbed angular correlation spectroscopy // Acta Crystallogr. B. 1993. V. 49. N 1. P. 165–169.
- 13. Schulze A. R., Mueller-Buschbaum H. Zur Struktur von monoklinem SrAl₂O₄
 // Z. Anorg. Allg. Chem. 1981. Bd 475. N 4. S. 205–210.
- Lindop A. J, Goodwin D. W. The refined structure of SrO·2Al₂O₃ // Acta Crystallogr. B. 1972. V. 28. N 8. P. 2625.
- 15. Chakoumakos B. C., Lager B. C, Fernandez G. A, Baca J. A. Refinement of the structures of Sr₃Al₂O₆ and the hydrogarnet Sr₃Al₂(O₄D₄)₃ by Rietveld analysis of neutron powder diffraction data // Acta Crystallogr. C. 1992. V. 48. N 3. P. 414–419.
- Lindop A. J, Matthews C, Goodwin D. W. The refined structure of SrO·6Al₂O₃ // Acta Crystallogr. B. 1975. V. 31. N 12. P. 2940–2942.
- 17. *Yamaguchi O, Narai A, Shimizu K*. New compound in the system SrO–Al₂O₃ // J. Amer. Ceram. Soc. 1986. V. 69. N 2. P. 36–38.
- Appendino P. Equilibres a l'etat solide dans le systeme oxyde de strontium oxyde de barium-alumine // Rev. Intern. Hautes Temper. Refract. 1972. V. 9. N 3. P. 297–302.

- 19. *Невский Н. Н, Глассер Л. Д., Илюхин В. В., Белов Н. В.* Кристаллическая структура простейшего алюмината стронция с трехмерным каркасом // ДАН. 1978. Т. 241. № 4. С. 821–824.
- 20. *Howard C. J, Kennedy B. J, Chakoumakos B. C.* Neutron powder diffraction study of rhombohedral rare-earth aluminates and the rhombohedral to cubic phase transition // J. Phys.: Condense Matter. 2000. V. 12. N 4. P. 349–365.
- Fava J., Oudalov Y. P., Reau J.-M., Le Flem G., Hagenmuller P. // Sur une nouvelle famille d'alluminates double de strontium ou d'europium divalent et de terres rares// Compt. Rend. Acad. Sci. 1972. V. C274. N 8. P. 1837–1839.
- 22. Лопато Л. М., Павликов В. Н., Лугин Л. И. Новые соединения в системах La₂O₃–SrO и Ce₂O₃–SrO // ЖНХ. 1969. Т. 14. № 3. С. 861–862.
- Schulze A. R., Mueller-Buschbaum H. Darstellung und Untersuchung der metastabilen Verbindung Sr₃La₄O₉ // Z. Anorg. Allg. Chem. 1980. Bd 471. N 12. S. 59–63.
- Hammann J. Etude par diffraction de neutrons a 0.31K de la structure antiferromagnetique des grenats d'aluminium-terbium et d'aluminium-holmium // Acta Crystallogr. B. 1969. V. 25. N 9. P. 1853–1856.
- Hammann J., Ocio M. Etude par diffraction neutronique a 0.4K de la Perovskite d'aluminium et d'holmium // Acta Crystallogr. A. 1977. V. 33. N 6. P. 975–978.
- Levin A. A. Crystal structure of holmium aluminate HoAlO₃ // Kristallografiya 1992. V. 37. N 6. P. 1020–1021.
- 27. *Thomas L., Roy B., Roy R.* New rare earth alkaline earth oxide compounds // J. Inorg. Nucl. Chem. 1967. V. 29. N 5. P. 1243–1248.

Таблица 1 Соединения в системе La₂O₃-Ho₂O₃-SrO-Al₂O₃ и их структурные характеристики

Соединение	Пространст-	Параметры элементарной ячейки	Литера-
	венная группа		тура
SrO	Fm3m	<i>a</i> =5.160 Å; <i>Z</i> =4	[9]
α -Al ₂ O ₃	$P\overline{3}c$	<i>a</i> =4.758, <i>c</i> =12.991 Å; <i>Z</i> =6	[10]
La_2O_3	P321	<i>a</i> =3.9373, <i>c</i> =6.1299 Å; <i>Z</i> =1	[11]
Ho ₂ O ₃	Ia 3	<i>a</i> =10.58 Å; <i>Z</i> =16	[12]
SrAl ₂ O ₄	P2 ₁	<i>a</i> =8.4424, <i>b</i> =8.8221, <i>c</i> =5.1607 Å;	[13]
		β=93.415; <i>Z</i> =4	
SrAl ₄ O ₇	C2/c	<i>a</i> =13.039, <i>b</i> =9.011, <i>c</i> =5.536 Å;	[14]
		β=106.2; <i>Z</i> =4	
$Sr_3Al_2O_6$	Pa3	<i>a</i> =15.8440 Å; <i>Z</i> =4	[15]
$SrAl_{12}O_{19}$	$P6_3/mmc$	<i>a</i> =5.585, <i>c</i> =22.07 Å; <i>Z</i> =2	[16]
$Sr_{12}Al_{14}O_{33}$	I43 <i>d</i>	a=12.325; Z=2	[17]
α -Sr ₄ Al ₂ O ₇		Устойчив выше 1575 °С	[18]
β -Sr ₄ Al ₂ O ₇		Устойчив при 1125–1300 °С	[18]
$Sr_7Al_{12}O_{25}$	P3	<i>a</i> =17.91, <i>c</i> =7.16 Å; <i>Z</i> =3	[19]
LaAlO ₃	P3m	<i>a</i> =5.364, <i>c</i> =13.11 Å	[20]
LaSrAlO ₄	I4/mmm	<i>a</i> =3.755, <i>c</i> =12.62 Å; <i>Z</i> =2	[21]
$La_2Sr_2O_5$	Fm3m	<i>a</i> =5.160 Å; <i>Z</i> =4	[22]
Sr ₃ La ₄ O ₉	Сс	<i>a</i> =11.657, <i>b</i> =7.34, <i>c</i> =13.471 Å;	[23]
		β=115.6; <i>Z</i> =4	
$Ho_3Al_{15}O_{12}$	$Ia\overline{3}d$	<i>a</i> =10.392 Å; <i>Z</i> = 8	[24]
HoAlO ₃	Pbnm	<i>a</i> =5.1811, <i>b</i> =5.3729, <i>c</i> =7.3741 Å;	[25, 26]
		Z=4	
SrHo ₂ O ₄	$P2_1$	<i>a</i> =9.75, <i>b</i> =11.6, <i>c</i> =3.47 Å; β=90.4;	[27]
		Z=4	
$La_2SrAl_2O_7$	I4/mmm	<i>a</i> =3.7712, <i>c</i> =20.197 Å	[1, 3]
Ho ₂ SrAl ₂ O ₇	I4/mmm	<i>a</i> =3.7090, <i>c</i> =19.448 Å	[1]

Таблица 2 Состав реакционной смеси в зависимости от времени и температуры прокаливания

Режим термооб-		Фазовый состав образцов после термообработки					
pa	аботки						
<i>Т</i> , °С	Время, ч	Содержание Но (х), мол. дол.					
		0.3	0.5	0.7			
	1	Исходные компоненты, LaAlO ₃ , LaSrAlO ₄ , SrAl ₂ O ₄					
	3–5	LaAlO ₃ , LaSrAlO ₄ , SrAl ₂ O ₄ , Ho ₂ O ₃					
1200	10–24	LaAlO ₃ , La ₂ SrAl ₂ O ₇ ,	LaAlO ₃ , LaSrAlO ₄ , SrAl ₂ O ₄ , LaAlO ₃ , LaSrAlO ₄ , Ho ₂ O ₃ ,				
		Ho ₂ O ₃ , SrAl ₄ O ₇ (следы)	Ho ₂ O ₃ , SrHo ₂ O ₄ , La ₂ SrAl ₂ O ₇ ,	SrAl ₂ O ₄ , Ln ₂ SrAl ₂ O ₇ (следы)			
1300	1	LaAlO ₃ , LaSrAlO ₄ , SrAl ₂ O ₄ ,	LaAlO ₃ , LaSrAlO ₄ , SrAl ₂ O ₄ ,	LaAlO ₃ , Ho ₂ O ₃ , LaSrAlO ₄ (сле-			
		Ho_2O_3 , $La_2SrAl_2O_7$	Ho ₂ O ₃ , Ln ₂ SrAl ₂ O ₇	ды), SrAl ₂ O ₄			
	3		Ho ₂ O ₃ , SrAl ₂ O ₄				
		LaAlO ₃ , LaSrAlO ₄ , Ho ₂ O ₃ ,	LaAlO ₃ , LaSrAlO ₄ , Ln ₂ SrAl ₂ O ₇				
	5	SrAl ₂ O ₄ , La ₂ SrAl ₂ O ₇	$Ln_2SrAl_2O_7$,				
			LaAlO ₃ , LaSrAlO ₄ , Ho ₂ O ₃ , SrAl ₂ O ₄ , SrHo ₂ O ₄				
	10	Ln ₂ SrAl ₂ O ₇ , LaAlO ₃ , LaSrAlO ₄ ,	$Ln_2SrAl_2O_7$,				
		Ho_2O_3 , $SrAl_2O_4$	Ho ₂ O ₃ , LaAlO ₃ , LaSrAlO ₄ , SrAl ₂ O ₄ , SrHo ₂ O ₄				
	24	Ln ₂ SrAl ₂ O ₇ , LaAlO ₃ , LaSrAlO ₄ ,	LaAlO ₃ , LaSrAlO ₄ , Ln ₂ SrAl ₂ O ₇ ,				
		Ho_2O_3 , $SrAl_2O_4$	Ho ₂ O ₃ , SrAl ₂ O ₄ SrHo ₂ O ₄				
1400	1			Ho ₂ SrAl ₂ O ₇ , LaAlO ₃ , LaSrAlO ₄ ,			
		La ₂ SrAl ₂ O ₇ , LaAlO ₃ , LaSrAlO ₄ ,	Ln ₂ SrAl ₂ O ₇ , LaAlO ₃ , LaS-	Ho_2O_3 , $SrAl_2O_4$			
	3	SrAl ₂ O ₄ , Ho ₂ O ₃	rAlO ₄ , SrAl ₂ O ₄ , Ho ₂ O ₃	Ln ₂ SrAl ₂ O ₇ , Ho ₂ O ₃ , SrAl ₂ O ₄			
	5	Ln ₂ SrAl ₂ O ₇ (следы), Ho ₂ O ₃ , SrAl ₂ O ₄					
	10–24	$Ln_2SrAl_2O_7$					
	5	Ln ₂ SrAl ₂ O ₇ , Ho ₂ O ₃ (следы), SrAl ₂ O ₄					
1500	10–24	$Ln_2SrAl_2O_7$					

Таблица 3

Параметры элементарных ячеек фаз со слоистой структурой типа *P*₂/*RS* и структурой перовскита в реакционной смеси после 5 ч прокаливания при 1300 °C и твердых растворов в зависимости от концентрации

Содержание Но в твердом	Параметр <i>с</i> (Å) для структуры <i>P</i> ₂ / <i>RS</i>		Содержание Но в фазе со	Параметр <i>а</i> (Å) для структуры <i>Р</i>	
растворе	Реакционная смесь	Твердый раствор	<i>P</i> ₂ / <i>RS</i> в реак- ционной смеси	Реакционная смесь	LaAlO ₃
0.3	20.109	20.065	0.23	3.790	3.79
0.7	19.622	19.733	0.80	3.791	

Импульсы

2θ

Рис. 1. Дифрактограммы реакционой смеси, исходный состав которой соответствует стехиометрии твердых растворов $(La_{0.7}Ho_{0.3})_2SrAl_2O_7(I)$ и $(La_{0.3}Ho_{0.7})_2SrAl_2O_7(2)$, после 5 ч обжига при температуре 1300 °C.

Рис. 2. Диффрактограмма твердого раствора $(La_{0.5}Ho_{0.5})_2SrAl_2O_7$ после 30 ч обжига при температуре 1450 °C.

Рис. 3. Частные разрезы систем Ho₂O₃–SrO–Al₂O₃ (*a*) и La₂O₃–SrO–Al₂O₃ (*б*), в которых происходят промежуточные реакции формирования слоистой структуры типа P_2/RS при синтезе твердых растворов (La_xHo_{1-x})₂SrAl₂O₇.

Рис. 4. Параметр c (Å) элементарной ячейки твердых растворов $(La_xHo_{1-x})_2SrAl_2O_7$ в зависимости от содержания гольмия.