© Исаева А. С., Кожина И. И., Тойкка А. М., Зверева И. А.

СТРУКТУРНО-ХИМИЧЕСКИЙ МЕХАНИЗМ ФОРМИРОВАНИЯ ТВЕРДЫХ РАСТВОРОВ В СИСТЕМЕ La₂SrAl₂O₇-Ho₂SrAl₂O₇

Санкт-Петербургский государственный университет, СПб, Россия, 199034, Санкт-Петербург, Университетская наб., 7/9

Исследованы процессы фазообразования в системе La_2O_3 – Ho_2O_3 –SrO– Al_2O_3 в области температур 1200–1500 °C. Приведены структурные характеристики соединений, известных в исследуемой системе. Установлено, что формирование твердых растворов ($La_{1-x}Ho_x$) $_2SrAl_2O_7$ протекает через образование соединений $LaAlO_3$, $LaSrAlO_4$, $SrAl_2O_4$ и $SrHo_2O_4$. При росте содержания гольмия, а также при увеличении температуры происходит переход от механизма, в котором лимитирующей стадией является взаимодействие $LaAlO_3$ и $LaSrAlO_4$, к механизму, в котором определяющими являются взаимодействия $SrAl_2O_4$ с Ho_2O_3 и $SrHo_2O_4$ с Al_2O_3 .

Введение. В настоящее время все большее внимание уделяется исследованию твердых растворов в сложных оксидных системах, содержащих редкоземельные элементы, в связи с широкими потенциальными возможностями их применения в электронной технике. Твердые растворы на основе алюминатов РЗЭ и ЩЗЭ также относятся к числу перспективных материалов для создания высокотемпературной керамики, обладающей высокой механической и термической устойчивостью, поэтому исследование процессов фазообразования в системах Ln₂O₃–Ln'₂O₃–SrO–Al₂O₃ представляет не только фундаментальный, но и практический интерес.

В данной работе представлены результаты исследования процессов фазообразования в частном разрезе $La_2SrAl_2O_7$ — $Ho_2SrAl_2O_7$ системы La_2O_3 — Ho_2O_3 —SrO— Al_2O_3 .

Сложные оксиды $La_2SrAl_2O_7$ и $Ho_2SrAl_2O_7$ являются крайними членами ряда алюминатов $Ln_2SrAl_2O_7$ [1], кристаллизующихся в структурном типе $Sr_3Ti_2O_7$ [2]. Соединения $Ln_2SrAl_2O_7$ относятся к перовскитоподобным слоистым фазам, построенным по блочному принципу путем чередования слоев структуры перовскита (P) и фрагментов структуры каменной соли (RS) в последовательности P_2/RS . В структуре $Ln_2SrAl_2O_7$ (Ln = La—Ho) установлено упорядочение катионов Ln^{3+} и Sr^{2+} , которые заселяют две структурные позиции (9-координированное состояние в слое P и 12-координированное состояние в слое RS). Распределение по неэквивалентным позициям зависит от природы атомов P39: в ряду La—Ho происходит переход от почти статистически беспорядочного распределения катионов La^{3+} и Sr^{2+} в $La_2SrAl_2O_7$ к упорядоченному распределению с преимущественной заселенностью катионами Ho^{3+} слоя со структурой каменной соли в оксиде $Ho_2SrAl_2O_7$ [1, 3].

Структурно-химический механизм образования оксидов $Ln_2SrAl_2O_7$ изучался в работах [4–6]. Установлено, что синтез соединений со структурой P_2/RS идет через образование фаз с более простыми структурными типами P и P/RS, если эти фазы устойчивы при температуре синтеза. Это характерно для $Ln_2SrAl_2O_7$ (Ln = La, Nd, Sm), где промежуточными продуктами являются соединения $LnAlO_3$ (P) и $LnSrAlO_4$ (P/RS). Механизм образования $Ln_2SrAl_2O_7$ (Ln = Gd, Tb, Dy, Ho) вследствие неустойчивости фазы $LnAlO_3$ при температуре синтеза идет через взаимодействие $SrAl_2O_4$ и Ln_2O_3 . Для соединений первой половины ряда $Ln_2SrAl_2O_7$ (La, Nd, Sm) скорость реакции синтеза от La до Sm возрастает, температура синтеза уменьшается, что свидетельствует о большей реакционной способности $LnAlO_3$ и $LnSrAlO_4$ в случае Nd и Sm по сравнению с La-содержащими алюминатами. В ряду Gd-Ho скорость синтеза $Ln_2SrAl_2O_7$ уменьшается, а температура синтеза увеличивается.

Механизм образования твердых растворов типа $(Ln_xLn'_{1-x})_2SrAl_2O_7$ был впервые исследован в системе $Nd_2SrAl_2O_7$ — $Ho_2SrAl_2O_7$ [7]. Показано, что он определяется содержанием неодима и температурой.

Исходные компоненты системы $La_2SrAl_2O_7$ — $Ho_2SrAl_2O_7$ по сравнению с компонентами системы $Nd_2SrAl_2O_7$ — $Ho_2SrAl_2O_7$ различаются между собой кинетикой образования. Так, образование $La_2SrAl_2O_7$ начинается только при $1300~^{\circ}C$, в то время как $Nd_2SrAl_2O_7$ уже при $1000~^{\circ}C$, хотя синтез промежуточных соединений $LnAlO_3$ и $LnSrAlO_4$ начинается при $1000~^{\circ}C$ для обеих систем. Можно предположить, что из-за разницы в температурах синтеза механизм образования твердого раствора в системе $La_2SrAl_2O_7$ — $Ho_2SrAl_2O_7$ будет иным, чем в системе $Nd_2SrAl_2O_7$ — $Ho_2SrAl_2O_7$, и это позволит более точно выявить влияние природы $P3O_3$ на механизм синтеза твердых растворов $(Ln_xLn'_{1-x})_2SrAl_2O_7$ и его возможную зависимость от содержания гольмия и температуры.

Экспериментальная часть. Изучение фазообразования в системах La_2O_3 – Ho_2O_3 –SrO– Al_2O_3 осуществляли методом изотермического «отжигазакалки» в интервале температур 1200–1500 °C по реакции

$$(1-x)La_2O_3 + xHo_2O_3 + Al_2O_3 + SrCO_3 \rightarrow (La_{1-x}Ho_x)_2SrAl_2O_7 + CO_2$$
. (1)

В качестве исходных реагентов использовали карбонат стронция квалификации «осч» 7-2 (ТУ 6-09-01-659-91), оксиды лантана и гольмия (содержанием основного компонента 99.95 и 99.99 % соответственно) и тонкодисперсный оксид алюминия (Johnson Mattey 99.99 %, 1–15 мкм), содержащий некоторое количество γ-модификации. Шихту, приготовленную исходя из стехиометрического соотношения исходных компонентов по (1), прессовали в таблетки массой 0.5 г и диаметром 0.7 см. Обжиг образцов проводили в силитовой печи, контроль температуры осуществляли платино-родиевой термопарой. Изотермический режим термообработки обеспечивали с точностью ±1 °C с помощью программного терморегулятора ТП-403.

Фазовый состав и последовательность фазовых превращений контролировали рентгенографически, съемку проводили на дифрактометре ДРОН-3 (CuK_{α} -излучение) в интервале углов $2\theta = 6$ –50 °C. Дифрактограммы однофаз-

ных твердых растворов и ряда образцов реакционной смеси были сняты на дифрактометре Philips Analitical X-ray PW3020 в интервале углов 20, равном 5–110 °C. На рис. 1 и 2 представлены дифрактограммы продуктов 5-часового обжига при температуре 1300°C реакционных смесей, исходный состав которых соответствует стехиометрии твердых растворов ($La_{0.7}Ho_{0.3}$)₂SrAl₂O₇ и ($La_{0.3}Ho_{0.7}$)₂SrAl₂O₇, и стехиометрии однофазного твердого раствора ($La_{0.5}Ho_{0.5}$)₂SrAl₂O₇, полученного в результате 30 ч обжига при температуре 1450 °C.

Обсуждение результатов. При анализе фазового состава учитывалось многообразие соединений, известных в системе La_2O_3 – Ho_2O_3 –SrO– Al_2O_3 , структурные характеристики которых приведены в табл. 1. Фазовый состав продукта, полученного после термообработки реакционной смеси, в зависимости от времени и температуры для трех твердых растворов ($La_{1-x}Ho_x$)₂SrAl₂O₇ представлен в табл. 2.

Анализ данных таблицы позволяет выделить следующие основные результаты.

Температура синтеза 1200 °C. В течение первых 1–5 ч образуются промежуточные соединения LaAlO₃, LaSrAlO₄ и SrAl₂O₄. В результате длительного обжига в течение 10–24 ч при содержании гольмия x = 0.5 и 0.7 образуются в небольшом количестве La₂SrAl₂O₇ и следы Ho₂SrAl₂O₇. Процесс образования этих индивидуальных соединений происходит в I и II частных разрезах тройных систем, которые являются составными частями системы La₂O₃–Ho₂O₃–SrO–Al₂O₃ (рис. 3) в соответствии с промежуточными реакциями

$$LaAlO_3 + LaSrAlO_4 \rightarrow La_2SrAl_2O_7$$
, (2)

$$SrAl_2O_4 + Ho_2O_3 \rightarrow Ho_2SrAl_2O_7$$
. (3)

В этих же условиях при малом содержании гольмия (x = 0.3) сложный оксид $Ho_2SrAl_2O_7$ не фиксируется даже в следовых количествах, в то время как $La_2SrAl_2O_7$ обнаруживается в заметном количестве. Кроме того, наблюдаются рефлексы, которые могут быть отнесены к фазе $SrAl_4O_7$ или, вероятно, к твер-

дому раствору $SrAl_{4-x}Ho_xO_7$. О возможности замещения алюминия гольмием свидетельствует существование изоструктурных соединений $SrAl_2O_4$ и $SrHo_2O_4$, а также интерлантаноида $LaHoO_3$, изоструктурного $LaAlO_3$. Кроме того, гольмий имеет малый ионный радиус, для шестикоординированного состояния R_{Ho}^{3+} = 0.901 Å, R_{Al}^{3+} = 0.535 Å [8]. Однако в структуре $SrAl_4O_7$ ионы алюминия находятся в тетраэдрическом окружении, поэтому замещение Al атомами гольмия невыгодно. Неудавшиеся попытки синтеза твердых растворов $SrAl_{4-x}Ho_xO_7$ подтвердили это.

Температура синтеза 1300 °C. В реакционной смеси, обогащенной лантаном (x = 0.3), уже после 1 ч прокаливания в следовых количествах появляется фаза со структурой P_2/RS в виде индивидуального соединения $La_2SrAl_2O_7$, а в случае эквимолярного содержания La и Ho (x = 0.5) — в виде твердого раствора ($La_{1-x}Ho_x$) $_2SrAl_2O_7$. В смеси, обогащенной гольмием, фаза со структурой P_2/RS образуется только после 3 ч прокаливания. При проведении термообработки в течение 5 и 10 ч в небольшом количестве был обнаружен гольмиат стронция $SrHo_2O_4$, кристаллизующийся в структурном типе шпинели. Это свидетельствует о том, что синтез $Ho_2SrAl_2O_7$ также протекает через промежуточную стадию

$$SrHo_2O_4 + Al_2O_3 \rightarrow Ho_2SrAl_2O_7. \tag{4}$$

Факт взаимодействия $SrHo_2O_4$ и исходного оксида алюминия с образованием $Ho_2SrAl_2O_7$ был подтвержден независимым синтезом, согласно реакции (4), в III частном разрезе исследуемой системы (рис. 3, δ). Оксид $SrHo_2O_4$ был предварительно синтезирован при температуре 1500 °C по реакции

$$Ho_2O_3 + SrCO_3 \rightarrow SrHo_2O_4 + CO_2$$
. (5)

Установлено, что процесс образования $Ho_2SrAl_2O_7$ при использовании в качестве реагентов $SrHo_2O_4$ и Al_2O_3 протекает при более низкой температуре (1300 °C), чем при использовании исходных компонентов по реакции (1).

Температура синтеза 1400 °C. Наблюдается более интенсивное протекание реакции, т.е. при всех концентрациях гольмия уже через 1 ч происхо-

дит образование фазы со структурой P_2/RS . Однако в этом случае имеет место существенное влияние исходного состава реагентов. Так, при малом содержании гольмия образуется соединение La₂SrAl₂O₇, при эквимолярном соотношении лантана и гольмия формируется твердый раствор изоморфного замещения (La_{1-x}Ho_x)₂SrAl₂O₇, а при x = 0.7 образуется твердый раствор, близкий по составу к соединению Ho₂SrAl₂O₇. Твердые растворы со структурой P_2/RS появляются через 3 ч для x = 0.7 и через 5 ч для x = 0.3. Однафазные образцы твердых растворов указанных составов получаются после 10 ч прокаливания.

Температура синтеза 1500 °C. Через 5 ч в реакционной смеси преобладает фаза твердого раствора и наблюдаются незначительные примеси соединений Ho_2O_3 и $SrAl_2O_4$.

Непрерывный ряд твердых растворов ($La_{1-x}Ho_x$)₂ $SrAl_2O_7$ для $0 \le x \le 1$ был получен путем прокаливания при температуре 1450 °C в течение 30 ч. Длительное прокаливание необходимо для достижения равновесного распределения катионов РЗЭ по структурным позициям. На дифрактограмме твердого раствора ($La_{0.5}Ho_{0.5}$)₂ $SrAl_2O_7$ (рис. 2) все максимумы соответствуют рефлексам структурного типа $Sr_3Ti_2O_7$, в котором кристаллизуются сложные алюминаты $Ln_2SrAl_2O_7$. Об образовании непрерывного ряда твердых растворов свидетельствует монотонный характер изменения параметров элементарной ячейки в зависимости от содержания гольмия (рис. 4).

Исследование процессов фазообразования в псевдобинарном разрезе $La_2SrAl_2O_7$ — $Ho_2SrAl_2O_7$ системы La_2O_3 — Ho_2O_3 —SrO— Al_2O_3 позволяет выявить структурно-химический механизм образования твердых растворов со структурой P_2/RS . Присутствие соединений $LaAlO_3$ и $LaSrAlO_4$ в реакционной смеси при всех температурах синтеза свидетельствует о том, что процесс образования твердых растворов протекает через промежуточную стадию по реакции (2). Именно такой механизм образования характерен для начала ряда лантаноидов $Ln_2SrAl_2O_7$ (Ln = La, Nd, Sm) [4, 5]. То, что в реакционной смеси наряду с LaA- Lo_3 и $LaSrAlO_4$ присутствует также Lo_2O_3 и $LaSrAl_2O_4$, указывает на протекание

реакции (3), которая является лимитирующей при синтезе $Ln_2SrAl_2O_7$ второй половины ряда лантаноидов начиная с гадолиния [6].

По характеру дифрактограмм реакционной смеси, когда твердый раствор только формируется, судить о его составе (о соотношении La и Ho) весьма затруднительно, но можно выделить следующую закономерность: образование твердых растворов, близких по составу к индивидуальным соединениям $La_2SrAl_2O_7$ и $Ho_2SrAl_2O_7$, фиксируется наилучшим образом при значительном различии в содержании лантана и гольмия.

Оценка состава твердого раствора в реакционной смеси была проведена путем сравнения параметров элементарной ячейки перовскитоподобной слоистой фазы типа P_2/RS в реакционной смеси (табл. 3) и в однофазных твердых растворах (рис. 4). При анализе данных табл. 3 можно отметить следующее: 1) в продукте из реакционной смеси, соответствующей твердому раствору $(La_{0.7}Ho_{0.3})_2SrAl_2O_7$, после 5 ч синтеза обнаруживается твердый раствор, близкий по составу $(La_{0.77}Ho_{0.23})_2SrAl_2O_7$; 2) в продукте, полученном из реакционной смеси, соответствующей твердому раствору $(La_{0.3}Ho_{0.7})_2SrAl_2O_7$, – раствор, близкий по составу $(La_{0.2}Ho_{0.8})_2SrAl_2O_7$; 3) фаза со структурой перовскита представляет собой индивидуальное соединение $LaAlO_3$, в матрице которого не наблюдается изоморфного замещения лантана на гольмий.

Образование твердых растворов, близких по составу $Ho_2SrAl_2O_7$, наблюдается при более низкой температуре (1300 °C), чем температура образования $Ho_2SrAl_2O_7$ (1400 °C). При этом оксид La_2O_3 исчезает из реакционной смеси достаточно быстро, образуя $LaAlO_3$ и $LaSrAlO_4$, а оксид Ho_2O_3 присутствует в реакционной смеси вплоть до образования однофазных твердых растворов. Это связано с более медленным протеканием реакции образования гольмий содержащего оксида и медленным вхождением атомов гольмия в матрицу твердого раствора.

Тот факт, что твердые растворы $(La_{1-x}Ho_x)_2SrAl_2O_7$ в отличие от $(Nd_{1-x}Ho_x)_2SrAl_2O_7$ образуются, хотя и в незначительной степени по реакции (4)

с участием $SrHo_2O_4$, объяснить достаточно трудно. Возможно, различия обусловлены более быстрым протеканием реакции образования как чистого соединения $Nd_2SrAl_2O_7$, так и неодимсодержащих твердых растворов, тогда как за короткое время синтеза оксид $SrHo_2O_4$ не образуется. В любом случае более существенные различия в природе катионов La^{+3} и Ho^{+3} , нежели пары Nd^{+3} и Ho^{+3} , вносят специфику в механизм образования растворов ($Ln_{1-x}Ln'_x)_2SrAl_2O_7$.

Заключение. В результате проведенного исследования установлено, что в системе La_2O_3 — Ho_2O_3 —SrO— Al_2O_3 появление зародышей фаз перовскитоподобной слоистой структуры типа P_2/RS происходит при 1200 °C. Твердые растворы $(La_{1-x}Ho_x)_2SrAl_2O_7$ без заметных примесей образуются при температуре 1400 °C и выше в течение 24—40 ч.

Образование твердых растворов ($La_{1-x}Ho_x$)₂SrAl₂O₇ протекает через промежуточные соединения LaAlO₃, LaSrAlO₄, SrAl₂O₄ и SrHo₂O₄. В исходной реакционной смеси, обогащенной лантаном, в интервале температур синтеза 1200–1500 °C сначала появляется индивидуальное соединение $La_2SrAl_2O_7$, а затем путем изоморфного замещения атомов лантана атомами гольмия происходит образование твердых растворов со слоистой структурой P_2/RS . При образовании твердых растворов, обогащенных гольмием, при высоких температурах атомы гольмия также входят в уже существующую матрицу твердого раствора, изменяя его состав. Такое направление процесса «замещения» вполне согласуется с фактом стабилизации слоистой структуры P_2/RS в ряду La—Ho ранее обнаруженным в ходе структурных исследований оксидов $La_2SrAl_2O_7$.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (04-03-32176) и программы «Университеты России» (УР.06.01.317).

Список литературы

- 1. Zvereva I., Smirnov Yu., Gusarov V., Popova V., Choisnet J. Complex aluminates $RE_2SrAl_2O_7$ (RE = La, Nd, Sm-Ho): cation ordering and stability of the double perovskite slab-rock salt layer P_2/RS intergrowth // Solid State Sci. 2003. V. 5. N 2. P. 343–349.
- 2. Ruddlesden S. N., Popper P. The compounds Sr₃Ti₂O₇ and its structure // Acta Crystallogr. 1958. V. 11. N 1. P. 54–55.
- 3. *Зверева И. А, Смирнов Ю. Е, Вагапов Д. А, Шуане Ж*. Распределение катионов и межатомные взаимодействия в оксидах с гетеровалентным изоморфизмом атомов. II Сложные алюминаты Ln₂SrAl₂O₇ (Ln = La, Nd, Gd) // ЖОХ. 2000. Т. 70. № 12. С. 1957–1962.
- 4. Зверева И. А, Попова В. Ф, Вагапов Д. А, Тойкка А. М, Гусаров В. В. Кинетика образования фаз Руддлесдена-Поппера. І. Механизм формирования La₂SrAl₂O₇ // ЖОХ. 2001. Т. 71. № 8. С. 1254–1258.
- 5. *Зверева И. А., Попова В. Ф., Пылкина Н. С., Гусаров В. В.* Кинетика образования фаз Руддлесдена–Поппера. II. Механизм формирования Nd₂SrAl₂O₇ и Sm₂SrAl₂O₇ // ЖОХ. 2003. Т. 73. № 1. С. 47–52.
- 6. Зверева И. А., Попова В. Ф., Миссюль А. Б., Тойкка А. М., Гусаров В. В. Кинетика образования фаз Руддлесдена-Поппера. III. Механизм формирования Gd₂SrAl₂O₇ // ЖОХ. 2003. Т. 73. № 5. С. 724–728.
- 7. *Миссюль А. Б, Марченко Е. М, Попова В. Ф, Зверева И. А.* Механизм и кинетика образования твердых растворов в системе Nd₂SrAl₂O₇— Ho₂SrAl₂O₇ // Физ. и хим. стекла. 2003. Т. 29. № 6. С. 839–844.
- 8. *Shannon R.D.* Revised effective ionic radii and systematic studies of interatomic distances in halides and halcogenides // Acta Crystallogr. A. 1976. V. 32. N 5. P. 751–766.

- 9. *Primak W., Kaufman H., Ward R. X*-ray diffraction studies of systems involved in the preparation of alkaline earth sulfide and selenide phosphors // J. Amer. Chem. Soc. 1948. V. 70. N 12. P. 2043–2046.
- 10. *Oetzel M., Heger G.* Laboratory *X*-ray powder diffraction: a comparison of different geometries with special attention to the usage of the CuKalpha doublet // J. Appl. Crystallogr. 1999. V. 32. N 4. P. 799–807.
- 11. *Aldebert P., Traverse J. P.* Etude par diffraction neutronique des structures de haute temperature de La₂O₃ et Nd₂O₃// Mater. Res. Bull. 1979. V. 14. N 3. P. 303–323.
- 12. *Bartos A., Lieb K. P., Uhrmacher M., Wiarda D.* Refinement of atomic positions in bixbyite oxides using perturbed angular correlation spectroscopy // Acta Crystallogr. B. 1993. V. 49. N 1. P. 165–169.
- 13. Schulze A. R., Mueller-Buschbaum H. Zur Struktur von monoklinem SrAl₂O₄ // Z. Anorg. Allg. Chem. 1981. Bd 475. N 4. S. 205–210.
- 14. *Lindop A. J, Goodwin D. W.* The refined structure of SrO·2Al₂O₃ // Acta Crystallogr. B. 1972. V. 28. N 8. P. 2625.
- 15. Chakoumakos B. C., Lager B. C, Fernandez G. A, Baca J. A. Refinement of the structures of Sr₃Al₂O₆ and the hydrogarnet Sr₃Al₂(O₄D₄)₃ by Rietveld analysis of neutron powder diffraction data // Acta Crystallogr. C. 1992. V. 48. N 3. P. 414–419.
- 16. Lindop A. J, Matthews C, Goodwin D. W. The refined structure of SrO·6Al₂O₃ // Acta Crystallogr. B. 1975. V. 31. N 12. P. 2940–2942.
- 17. *Yamaguchi O, Narai A, Shimizu K.* New compound in the system SrO–Al₂O₃ // J. Amer. Ceram. Soc. 1986. V. 69. N 2. P. 36–38.
- 18. *Appendino P*. Equilibres a l'état solide dans le systeme oxyde de strontium oxyde de barium-alumine // Rev. Intern. Hautes Temper. Refract. 1972. V. 9. N 3. P. 297–302.

- 19. *Невский Н. Н, Глассер Л. Д., Илюхин В. В., Белов Н. В.* Кристаллическая структура простейшего алюмината стронция с трехмерным каркасом // ДАН. 1978. Т. 241. № 4. С. 821–824.
- 20. *Howard C. J, Kennedy B. J, Chakoumakos B. C.* Neutron powder diffraction study of rhombohedral rare-earth aluminates and the rhombohedral to cubic phase transition // J. Phys.: Condense Matter. 2000. V. 12. N 4. P. 349–365.
- 21. Fava J., Oudalov Y. P., Reau J.-M., Le Flem G., Hagenmuller P. // Sur une nouvelle famille d'alluminates double de strontium ou d'europium divalent et de terres rares// Compt. Rend. Acad. Sci. 1972. V. C274. N 8. P. 1837–1839.
- 22. *Лопато Л. М., Павликов В. Н., Лугин Л. И*. Новые соединения в системах La₂O₃−SrO и Ce₂O₃−SrO // ЖНХ. 1969. Т. 14. № 3. С. 861–862.
- 23. *Schulze A. R., Mueller-Buschbaum H.* Darstellung und Untersuchung der metastabilen Verbindung Sr₃La₄O₉ // Z. Anorg. Allg. Chem. 1980. Bd 471. N 12. S. 59–63.
- 24. *Hammann J.* Etude par diffraction de neutrons a 0.31K de la structure antiferromagnetique des grenats d'aluminium-terbium et d'aluminium-holmium // Acta Crystallogr. B. 1969. V. 25. N 9. P. 1853–1856.
- 25. *Hammann J., Ocio M.* Etude par diffraction neutronique a 0.4K de la Perovskite d'aluminium et d'holmium // Acta Crystallogr. A. 1977. V. 33. N 6. P. 975–978.
- 26. Levin A. A. Crystal structure of holmium aluminate HoAlO₃ // Kristallografiya 1992. V. 37. N 6. P. 1020–1021.
- 27. *Thomas L., Roy B., Roy R.* New rare earth alkaline earth oxide compounds // J. Inorg. Nucl. Chem. 1967. V. 29. N 5. P. 1243–1248.

Таблица 1 Соединения в системе La₂O₃–Ho₂O₃–SrO–Al₂O₃ и их структурные характеристики

Соединение	Пространст-	Параметры элементарной ячейки	Литера-
Соединение	венная группа	параметры элементарной и тейки	тура
SrO	Fm3m	a=5.160 Å; Z=4	[9]
		,	
α -Al ₂ O ₃	$P\overline{3}c$	<i>a</i> =4.758, <i>c</i> =12.991 Å; <i>Z</i> =6	[10]
La_2O_3	P321	<i>a</i> =3.9373, <i>c</i> =6.1299 Å; <i>Z</i> =1	[11]
	_	10.70 % 57.15	54.67
Ho_2O_3	$Ia\overline{3}$	<i>a</i> =10.58 Å; <i>Z</i> =16	[12]
SrAl ₂ O ₄	$P2_1$	<i>a</i> =8.4424, <i>b</i> =8.8221, <i>c</i> =5.1607 Å;	[13]
		β=93.415; Z=4	
SrAl ₄ O ₇	C2/c	<i>a</i> =13.039, <i>b</i> =9.011, <i>c</i> =5.536 Å;	[14]
		β=106.2; Z=4	
$Sr_3Al_2O_6$	Pa3	<i>a</i> =15.8440 Å; <i>Z</i> =4	[15]
SrAl ₁₂ O ₁₉	P6 ₃ /mmc	<i>a</i> =5.585, <i>c</i> =22.07 Å; <i>Z</i> =2	[16]
Sr ₁₂ Al ₁₄ O ₃₃	I43 <i>d</i>	<i>a</i> =12.325; <i>Z</i> =2	[17]
α -Sr ₄ Al ₂ O ₇		Устойчив выше 1575 °C	[18]
β-Sr ₄ Al ₂ O ₇		Устойчив при 1125–1300 °C	[18]
$Sr_7Al_{12}O_{25}$	P3	<i>a</i> =17.91, <i>c</i> =7.16 Å; <i>Z</i> =3	[19]
LaAlO ₃	P3m	<i>a</i> =5.364, <i>c</i> =13.11 Å	[20]
LaSrAlO ₄	I4/mmm	<i>a</i> =3.755, <i>c</i> =12.62 Å; <i>Z</i> =2	[21]
$La_2Sr_2O_5$	Fm3m	<i>a</i> =5.160 Å; <i>Z</i> =4	[22]
Sr ₃ La ₄ O ₉	Сс	<i>a</i> =11.657, <i>b</i> =7.34, <i>c</i> =13.471 Å;	[23]
		β =115.6; Z=4	
$Ho_3Al_{15}O_{12}$	$Ia\overline{3}d$	<i>a</i> =10.392 Å; <i>Z</i> = 8	[24]
HoAlO ₃	Pbnm	<i>a</i> =5.1811, <i>b</i> =5.3729, <i>c</i> =7.3741 Å;	[25, 26]
		Z=4	
SrHo ₂ O ₄	$P2_1$	$a=9.75, b=11.6, c=3.47 \text{ Å}; \beta=90.4;$	[27]
		Z=4	
La ₂ SrAl ₂ O ₇	I4/mmm	<i>a</i> =3.7712, <i>c</i> = 20.197 Å	[1, 3]
Ho ₂ SrAl ₂ O ₇	I4/mmm	<i>a</i> =3.7090, <i>c</i> = 19.448 Å	[1]

Таблица 2 Состав реакционной смеси в зависимости от времени и температуры прокаливания

Режим термообработки		Фазовый состав образцов после термообработки					
T, °C	Время, ч	Содержание Но (x) , мол. дол.					
1, 0	Бреми, т	0.3	0.5	0.7			
	1	Исходные компоненты, LaAlO ₃ , LaSrAlO ₄ , SrAl ₂ O ₄					
1200	3–5	LaAlO ₃ , LaSrAlO ₄ , SrAl ₂ O ₄ , Ho ₂ O ₃					
	10–24	LaAlO ₃ , La ₂ SrAl ₂ O ₇ , Ho ₂ O ₃ , SrAl ₄ O ₇ (следы)	LaAlO ₃ , LaSrAlO ₄ , SrAl ₂ O ₄ , Ho ₂ O ₃ , SrHo ₂ O ₄ , La ₂ SrAl ₂ O ₇ ,	LaAlO ₃ , LaSrAlO ₄ , Ho ₂ O ₃ , SrAl ₂ O ₄ , Ln ₂ SrAl ₂ O ₇ (следы)			
1300	1	LaAlO ₃ , LaSrAlO ₄ , SrAl ₂ O ₄ , Ho ₂ O ₃ , La ₂ SrAl ₂ O ₇	LaAlO ₃ , LaSrAlO ₄ , SrAl ₂ O ₄ , Ho ₂ O ₃ , Ln ₂ SrAl ₂ O ₇	LaAlO ₃ , Ho ₂ O ₃ , LaSrAlO ₄ (следы), SrAl ₂ O ₄			
	3	LaAlO ₃ , LaSrAlO ₄ , Ho ₂ O ₃ ,	Ho ₂ O ₃ , SrAl ₂ O ₄ LaAlO ₃ , LaSrAlO ₄ , Ln ₂ SrAl ₂ O ₇				
	5	SrAl ₂ O ₄ , La ₂ SrAl ₂ O ₇	$Ln_2SrAl_2O_7$,				
			LaAlO ₃ , LaSrAlO ₄ , Ho ₂ O ₃ , SrAl ₂ O ₄ , SrHo ₂ O ₄				
	10	Ln ₂ SrAl ₂ O ₇ , LaAlO ₃ , LaSrAlO ₄ , Ho ₂ O ₃ , SrAl ₂ O ₄	Ln ₂ SrAl ₂ O ₇ , Ho ₂ O ₃ , LaAlO ₃ , LaSrAlO ₄ , SrAl ₂ O ₄ , SrHo ₂ O ₄				
	24	Ln ₂ SrAl ₂ O ₇ , LaAlO ₃ , LaSrAlO ₄ ,	LaAlO ₃ , LaSrAlO ₄ , Ln ₂ SrAl ₂ O ₇ ,				
		Ho ₂ O ₃ , SrAl ₂ O ₄	Ho ₂ O ₃ , SrAl ₂ O ₄ SrHo ₂ O ₄				
1400	1	In Stal O Indio InStal	In Stal O Indlo Ins	Ho ₂ SrAl ₂ O ₇ , LaAlO ₃ , LaSrAlO ₄ , Ho ₂ O ₃ , SrAl ₂ O ₄			
	3	La ₂ SrAl ₂ O ₇ , LaAlO ₃ , LaSrAlO ₄ , SrAl ₂ O ₄ , Ho ₂ O ₃	Ln ₂ SrAl ₂ O ₇ , LaAlO ₃ , LaS- rAlO ₄ , SrAl ₂ O ₄ , Ho ₂ O ₃	Ln ₂ SrAl ₂ O ₇ , Ho ₂ O ₃ , SrAl ₂ O ₄			
	5						
	10–24	$Ln_2SrAl_2O_7$					
	5	Ln ₂ SrAl ₂ O ₇ , Ho ₂ O ₃ (следы), SrAl ₂ O ₄					
1500	10–24	$Ln_2SrAl_2O_7$					

Таблица 3 Параметры элементарных ячеек фаз со слоистой структурой типа P_2/RS и структурой перовскита в реакционной смеси после 5 ч прокаливания при 1300 °C и твердых растворов в зависимости от концентрации

Содержание Но	Параметр c (Å) для структуры P_2/RS		Содержание Но в фазе со структурой	Параметр a (Å) для структуры P	
в твердом растворе	Реакционная смесь	Твердый раствор	P_2/RS в реак- ционной смеси	Реакционная смесь	LaAlO ₃
0.3	20.109	20.065	0.23	3.790	3.79
0.7	19.622	19.733	0.80	3.791	

Импульсы

Рис. 1. Дифрактограммы реакционой смеси, исходный состав которой соответствует стехиометрии твердых растворов ($La_{0.7}Ho_{0.3}$)₂SrAl₂O₇ (*I*) и ($La_{0.3}Ho_{0.7}$)₂SrAl₂O₇ (*2*), после 5 ч обжига при температуре 1300 °C.

Импульсы

Рис. 2. Диффрактограмма твердого раствора ($La_{0.5}Ho_{0.5}$)₂SrAl₂O₇ после 30 ч обжига при температуре 1450 °C.

Рис. 3. Частные разрезы систем Ho_2O_3 –SrO– Al_2O_3 (*a*) и La_2O_3 –SrO– Al_2O_3 (*б*), в которых происходят промежуточные реакции формирования слоистой структуры типа P_2/RS при синтезе твердых растворов (La_xHo_{1-x})₂ $SrAl_2O_7$.

Рис. 4. Параметр c (Å) элементарной ячейки твердых растворов $(La_xHo_{1-x})_2SrAl_2O_7$ в зависимости от содержания гольмия.